首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  2022年   1篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2007年   4篇
  2005年   3篇
  2004年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1995年   2篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Microbiology - The taxonomic structure of the microbiomes colonizing the rapeseed rhizosphere soil was investigated using high-throughput sequencing of the 16S rRNA gene amplicon libraries. Effect...  相似文献   
2.
The response of barley seedlings to inoculation with associative rhizobacteria Azospirillum lipoferum 137, Arthrobacter mysorens 7, Agrobacterium radiobacter 10 and Flavobacterium sp. L30 was studied in hydroponic and quartz sand cultures in the presence of 50 microM CdCl2. Cadmium caused severe inhibition in the growth and uptake of nutrient elements by the plants. Inoculation with the bacteria slightly stimulated root length and biomass of hydroponically grown Cd-treated seedlings. The bacteria increased the content of nutrients such as P, Mg, Ca, Fe, Mn and Na in roots and or shoots of the plants grown in the absence of Cd. Positive changes in the element composition caused by the bacteria were less pronounced in Cd-treated plants, whereas the total amount of nutrients taken by the inoculated plants was generally increased significantly. The content of Cd in the inoculated plants was unchanged, except increased in roots upon addition of A. lipoferum 137. Inoculation did not affect the activity of peroxidase, alpha-mannosidase, phosphodiesterae, alpha-galactosidase, and concentration of sulfhydryl compounds used as biochemical markers of stress in plant roots. The results showed that associative bacteria were capable of decreasing partially the toxicity of Cd for the barley plants through the improvement in uptake of nutrient elements.  相似文献   
3.
Abstract: The population dynamics of associative nitrogen-fixers Azospirillum lipoferum 137, Arthrobacter mysorens 7, Flavobacterium sp. L30 and phosphate-solubilizing strain Agrobacterium radiobacter 10 in soil and the rhizoplane of inoculated plants was studied in pot and field experiments. All of the present strains were able to actively colonize the rhizoplane of barley, wheat, oat, tomatoes, rape, and alfalfa. For the most part the population size and dynamics of introduced bacteria depended only slightly on the plant genotype and soil conditions. The overall pictures of survival of the strains in soil and on plant roots were similar. The reliable effect of inoculation on plants was observed only in individual cases. No correlation was established between survival of introduced bacteria and their effect on plant development. It was concluded that the influence of plants on survival of bacteria was not specific. In contrast, the plant response to inoculation was conditioned to a greater extent by the plant genotype.  相似文献   
4.
BACKGROUND AND AIMS: To date, there are no crop mutants described in the literature that display both Cd accumulation and tolerance. In the present study a unique pea (Pisum sativum) mutant SGECd(t) with increased Cd tolerance and accumulation was isolated and characterized. METHODS: Ethylmethane sulfonate mutagenesis of the pea line SGE was used to obtain the mutant. Screening for Cd-tolerant seedlings in the M2 generation was performed using hydroponics in the presence of 6 microm CdCl2. Hybridological analysis was used to identify the inheritance of the mutant phenotype. Several physiological and biochemical characteristics of SGECd(t) were studied in hydroponic experiments in the presence of 3 microm CdCl2, and elemental analysis was conducted. KEY RESULTS: The mutant SGECd(t) was characterized as having a monogenic inheritance and a recessive phenotype. It showed increased Cd concentrations in roots and shoots but no obvious morphological defects, demonstrating its capability to cope well with increased Cd levels in its tissues. The enhanced Cd accumulation in the mutant was accompanied by maintenance of homeostasis of shoot Ca, Mg, Zn and Mn contents, and root Ca and Mg contents. Through the application of La(+3) and the exclusion of Ca from the nutrient solution, maintenance of nutrient homeostasis in Cd-stressed SGECd(t) was shown to contribute to the increased Cd tolerance. Control plants of the mutant (i.e. no Cd treatment) had elevated concentrations of glutathione (GSH) in the roots. Through measurements of chitinase and guaiacol-dependent peroxidase activities, as well as proline and non-protein thiol (NPT) levels, it was shown that there were lower levels of Cd stress both in roots and shoots of SGECd(t). Accumulation of phytochelatins [(PCcalculated) = (NPT)-(GSH)] could be excluded as a cause of the increased Cd tolerance in the mutant. CONCLUSIONS: The SGECd(t) mutant represents a novel and unique model to study adaptation of plants to toxic heavy metal concentrations.  相似文献   
5.
Plant growth-promoting rhizobacteria are commonly found in the rhizosphere (adjacent to the root surface) and may promote plant growth via several diverse mechanisms, including the production or degradation of the major groups of plant hormones that regulate plant growth and development. Although rhizobacterial production of plant hormones seems relatively widespread (as judged from physico-chemical measurements of hormones in bacterial culture media), evidence continues to accumulate, particularly from seedlings grown under gnotobiotic conditions, that rhizobacteria can modify plant hormone status. Since many rhizobacteria can impact on more than one hormone group, bacterial mutants in hormone production/degradation and plant mutants in hormone sensitivity have been useful to establish the importance of particular signalling pathways. Although plant roots exude many potential substrates for rhizobacterial growth, including plant hormones or their precursors, limited progress has been made in determining whether root hormone efflux can select for particular rhizobacterial traits. Rhizobacterial mediation of plant hormone status not only has local effects on root elongation and architecture, thus mediating water and nutrient capture, but can also affect plant root-to-shoot hormonal signalling that regulates leaf growth and gas exchange. Renewed emphasis on providing sufficient food for a growing world population, while minimising environmental impacts of agriculture because of overuse of fertilisers and irrigation water, will stimulate the commercialisation of rhizobacterial inoculants (including those that alter plant hormone status) to sustain crop growth and yield. Combining rhizobacterial traits (or species) that impact on plant hormone status thereby modifying root architecture (to capture existing soil resources) with traits that make additional resources available (e.g. nitrogen fixation, phosphate solubilisation) may enhance the sustainability of agriculture.  相似文献   
6.
Our study aimed to evaluate intraspecific variability of pea (Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.  相似文献   
7.
8.
Many bacteria belonging to the order Rhizobiales have fixNOQP genes which encode cytochrome oxidase with high affinity to oxygen required for oxidative phosphorylation in microaerophilic conditions. There is one copy of the identified fixNOQP operon in ancestral forms of rhizobia (Bradyrhizobium), as well as in their putative evolutionary predecessors (bacteria related to Rhodopseudomonas). At the same time, forms deeply specialized in symbiosis (Rhizobium leguminosarum, Sinorhizobium meliloti) have multiple (2–3) copies, some of them have a high similarity (>90%) to fixNOQP genes of Bradyrhizobium and Rhodopseudomonas, and others have only 30–50% similarity. Two divergent copies fixNOQP are detected in Tardiphaga, which is a representative of the Bradyrhizobiaceae family, lacking the ability to fix N2 (lack of nif genes encoding the synthesis of nitrogenase) and to induce the formation of nodules on legumes roots (lack of nod genes encoding the synthesis of signal Nod factors activating symbiosis development). The presence of Tardiphaga in nodule bacterial communities from a range of legumes, including Vavilovia formosa (relic representative of the tribe Fabeae, for which R. leguminosarum bv. viciae is the main microsymbiont), suggests that the ancestral gene duplication and subsequent divergence of fixNOQP operon in bacteria related to Tardiphaga opened the possibility of wide dissemination of functionally different copies of this cluster among symbiotically active forms of Rhizobiales. It is possible that the acquisition of fixNOQP genes determines adaptation of bacteria to microaerophilic niches not only in plants nodules but also in their environment (the rhizosphere, rhizoplane, internal portions of soil aggregates).  相似文献   
9.
The qualitative and quantitative composition of low-molecular exometabolites in roots of pea (Pisum sativum L.) was studied with a cultivar Triumph and its parental forms (a symbiotically effective variety k-8274 and a modern highly productive cv. Classic). A relationship between root exudation and the ability of cultivars to establish symbiosis was analyzed. In the early stages of plant growth, the roots of cv. Triumph exhibited low exudation of organic acids, sugars, and amino acids. The quantitative composition of organic acids in the root exudates of cv. Triumph was close to that of cv. k-8274, whereas the composition of sugars and amino acids was similar to that of cv. Classic. In the field experiment, the effect of inoculation with a mixture of rhizobium strains and mycorrhizal fungus on plant growth was more evident in cv. Triumph than in cvs. Classic and k-8274. The results suggest that the high symbiotic potential of cv. Triumph is related to exudation of pyruvic and succinic acids that were the major components of root exometabolites both in Triumph and k-8274 cultivars.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号