首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   2篇
  86篇
  2023年   4篇
  2022年   4篇
  2021年   13篇
  2020年   3篇
  2019年   11篇
  2018年   6篇
  2017年   7篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   7篇
  2012年   6篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2002年   2篇
  2001年   1篇
排序方式: 共有86条查询结果,搜索用时 0 毫秒
1.
Cyclin-dependent kinase 5 (Cdk5) is an atypical member of the cyclin-dependent kinase family and functions as a serine/threonine kinase that can be activated by non-cyclin binding activators p35 or p39. Cdk5 expression and activity has been linked with the development and progression of cancer; however, its expression in breast cancer has not been fully described. Protein expression of Cdk5 was determined in a large cohort of early-stage invasive breast cancer tumours (n = 1110) with long-term follow-up data using immunohistochemistry. Expression of CDK5 mRNA was assessed in the METABRIC cohort (n = 1980). Low nuclear and cytoplasmic expression of Cdk5 expression was significantly associated with shorter breast cancer-specific survival (P = .004 and P = .001, respectively). Importantly, low nuclear and cytoplasmic expression of Cdk5 remained associated with survival in multivariate analysis, including potentially confounding factors (hazard ratio (HR) = 0.612, 95% confidence interval (CI) = 0.418-0.896, P = .011 and HR = 0.507, 95% CI = 0.318-0.809, P = .004, respectively). In addition, low nuclear and cytoplasmic expression of Cdk5 was significantly associated with clinicopathological criteria associated with adverse patient prognosis. Low CDK5 mRNA expression was associated with shorter patient survival (P = .005) in the METABRIC cohort; no associations between copy gain or loss and survival were observed. These data suggest that low Cdk5 expression is associated with poor clinical outcome of breast cancer patients and may be of clinical relevance.  相似文献   
2.
Abstract

The costly media, inconsistent ligand density, ligand leakage, and possible destabilization of recombinant hepatitis B surface antigen (rHBsAg) particles are main drawbacks of using immunoaffinity chromatography (IAF) in the large-scale downstream processing. In this study, we aimed to use an efficient large-scale purification system as an alternative purification method for immunoaffinity chromatography. For this purpose, we suggested integrating non-affinity chromatographic methods of hydrophobic interaction chromatography (HIC) and size-exclusion chromatography (SEC) for cost-effective purification of rHBsAg expressed in P. pastoris. The optimization of such process is not trivial and straightforward since diverse molecular characteristics of expressed rHBsAg in each type of host cell cause different interactions in non-affinity chromatography processes. The working buffer composition and chromatography parameters are the most influential factors in hydrophobic interaction chromatography. The best result for lab-scale HIC was achieved by using ammonium sulfate buffer in 10% of saturation concentration in pH 7.0 with Butyl-S Sepharose 6 Fast Flow medium and with subsequent Tween-100 and urea elution. In this process, the recovery, purity, and total yield were about 84%, 82%, and 69%, respectively. By scaling-up the HIC and integrating it with Sephacryl S-400?SEC, we obtained highly pure, i.e.,?>?90%, rHBsAg virus-like particles (VLP).  相似文献   
3.
The focus of both clinical and basic studies on stem cells is increasing due to their potentials in regenerative medicine and cell-based therapies. Recently stem cells have been genetically modified to enhance an existing character in or to bring a new property to them. However, accomplishment of declared goals requires detailed knowledge about their molecular characteristics which could be achieved by genetic modifications mostly through nonviral transfection strategies. Capable of differentiating into multiple cells, human unrestricted somatic stem cells (hUSSCs) and human mesenchymal stem cells (hMSCs) seem to be suitable candidates for transfection approaches. Involvement of microRNAs (miRNAs) in many biological processes makes their transfection evaluation valuable. Herein we investigated the efficacy and toxicity of four typically used transfection reagents (Arrest-In, Lipofectamine 2000, Oligofectamine and HiPerfect) systematically to deliver fluorescent labeled-miRNA and Green Fluorescent Protein (GFP) expressing plasmid into hUSSCs and hMSCs. The authenticity of stem cells was verified by differentiation experiments along with flow cytometry of surface markers. Our study revealed that stemness properties of these stem cells were not affected by transient transfection. Moreover the ratios of cell viability and transfection efficiency in both analyzed stem cells were reversed. Considering cell viability, the highest fraction of GFP-expressing cells was obtained using Oligofectamine (~50%) while the highest transfection rate of miRNA was achieved by Lipofectamine 2000 (~90%). Moreover dependency of hMSCs to size of transfected nucleic acid and time-dependency of Oligofectamine and their affection on the yield of transfection were observed. Cytotoxicity assessments also showed that hUSSCs are sensitive to HiPerFect. In addition cells treated by Lipofectamine showed morphological changes. Representing the efficient nucleic acid transfection, our research facilitates comprehensive genetic modification of stem cells and demonstrates powerful approaches to understand stem cell molecular regulation mechanisms, which eventually improves nonviral cell-mediated gene therapy.

Electronic supplementary material

The online version of this article (doi:10.1007/s10616-012-9430-9) contains supplementary material, which is available to authorized users.  相似文献   
4.

Background:

Hepatitis delta virus (HDV) is a subviral human pathogen that exploits host RNA editing activity to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the large form (L-HDAg), which is required for RNA packaging.

Methods:

In this study, PCR-based site-directed mutagenesis by the overlap extension method was used to create the point mutation converting the small-HDAg (S-HDAg) stop codon to a tryptophan codon through three stages.

Results:

Sequencing confirmed the desirable mutation and integrity of the L-HDAg open reading frame. The amplicon was ligated into pcDNA3.1 and transfected to Huh7 and HEK 293 cell lines. Western blot analysis using enhanced chemiluminescence confirmed L-HDAg expression. The recombinant L-HDAg localized within the nuclei of cells as determined by immunofluorescence and confocal microscopy.

Conclusion:

Because L-HDAg requires extensive post-translational modifications, the recombinant protein expressed in a mammalian system might be fully functional and applicable as a tool in HDV molecular studies, as well as in future vaccine research.Key Words: Hepatitis Delta Virus, L-HDAg, SOEing-PCR  相似文献   
5.
The Protein Journal - With the increasing dominance of monoclonal antibodies (mAbs) in the biopharmaceutical industry and smaller antibody fragments bringing notable advantages over full-length...  相似文献   
6.
7.
8.
9.
Molecular Biology Reports - Clinical application of doxorubicin (DOX) is restricted due to its cardiotoxicity, reinforcing the significance of exploring new strategies to counteract DOX-induced...  相似文献   
10.
Cell-based approaches offer a potential therapeutic strategy for appropriate bone manufacturing. Capable of differentiating into multiple cell types especially osteoblasts spontaneously, unrestricted somatic stem cell (USSC) seems to be a suitable candidate. Recent studies have shown the involvement of microRNAs in several biological processes. miRNA microarray profiling was applied in order to identify the osteo-specific miRNA signature. Prior to this analysis, osteogenic commitment of osteoblasts was evaluated by measuring ALPase activity, biomineralization, specific staining and evaluation of some main osteogenic marker genes. To support our findings, various in silico explorations (for both putative targets and signaling pathways) and empirical analyses (miRNA transfections followed by qPCR of osteogenic indicators and ALPase activity measurement) were carried out. The function of GSK-3b inhibitor was also studied to investigate the role of WNT in osteogenesis. Transient modulation of multiple osteo-miRs (such as mir-199b, 1274a, 30b) with common targets (such as BMPR, TCFs, SMADs) as mediators of osteogenic pathways including cell-cell interactions, WNT and TGF-beta pathways, suggests a mechanism for rapid induction of the osteogenesis as an anti-miRNA therapy. The results of this research have identified the miRNA signature which regulates the osteogenesis mechanism in USSC. To conclude, our study reveals more details about the allocation of USSCs into osteogenic lineage through modulatory effect of miRNAs on targets and pathways required for creating a tissue-specific phenotype and may aid in future clinical interventions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号