排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
Nikos Poulakakis Joshua M. Miller Evelyn L. Jensen Luciano B. Beheregaray Michael A. Russello Scott Glaberman Jeffrey Boore Adalgisa Caccone 《Journal of Zoological Systematics and Evolutionary Research》2020,58(4):1262-1275
Galapagos giant tortoises (Chelonoidis spp.) are a group of large, long-lived reptiles that includes 14 species, 11 of which are extant and threatened by human activities and introductions of non-native species. Here, we evaluated the phylogenetic relationships of all extant and two extinct species (Chelonoidis abingdonii from the island of Pinta and Chelonoidis niger from the island of Floreana) using Bayesian and maximum likelihood analysis of complete or nearly complete mitochondrial genomes. We also provide an updated phylogeographic scenario of their colonization of the Galapagos Islands using chrono-phylogenetic and biogeographic approaches. The resulting phylogenetic trees show three major groups of species: one from the southern, central, and western Galapagos Islands; the second from the northwestern islands; and the third group from the northern, central, and eastern Galapagos Islands. The time-calibrated phylogenetic and ancestral area reconstructions generally align with the geologic ages of the islands. The divergence of the Galapagos giant tortoises from their South American ancestor likely occurred in the upper Miocene. Their diversification on the Galapagos adheres to the island progression rule, starting in the Pleistocene with the dispersal of the ancestral form from the two oldest islands (San Cristóbal and Española) to Santa Cruz, Santiago, and Pinta, followed by multiple colonizations from different sources within the archipelago. Our work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human-mediated dispersal events and provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galapagos lineages. 相似文献
2.
S. Corrigan C. Huveneers T. S. Schwartz R. G. Harcourt L. B. Beheregaray 《Journal of fish biology》2008,73(7):1662-1675
This study reports on evidence for reproductive isolation among Orectolobus ornatus and Orectolobus halei, two previously cryptic and recently redescribed species of wobbegong shark (Orectolobiformes: Orectolobidae) from the east coast of Australia. The evidence is based on disparity in size at sexual maturity, diagnostic nuclear and mitochondrial DNA variants, and marked phylogenetic divergence. Plots of total length (LT) and maturity for the two species were non‐overlapping and illustrative of statistically significant size dimorphism. Genetic analyses and phylogenetic reconstruction did not provide indication of hybridization between O. ornatus and O. halei. In fact, sequence divergence between them was higher than in comparisons with another congeneric and largely co‐distributed wobbegong species (Orectolobus maculatus). The assumption of a molecular clock revealed that the two species have evolved in isolation for c. 3·9 million years. These results challenge a paradigm often mentioned in the biodiversity literature that most cryptic species are the product of recent speciation events and will contribute to the development of effective management strategies for wobbegong sharks. 相似文献
3.
Catherine R. M. Attard Chris J. Brauer Jacob D. Van Zoelen Minami Sasaki Michael P. Hammer Leslie Morrison James O. Harris Luciana M. Möller Luciano B. Beheregaray 《Conservation Genetics》2016,17(6):1469-1473
Maintaining genetic diversity within captive breeding populations is a key challenge for conservation managers. We applied a multi-generational genetic approach to the captive breeding program of an endangered Australian freshwater fish, the southern pygmy perch (Nannoperca australis). During previous work, fish from the lower Murray-Darling Basin were rescued before drought exacerbated by irrigation resulted in local extinction. This endemic lineage of the species was captive-bred in genetically designed groups, and equal numbers of F1 individuals were reintroduced to the wild with the return of favourable habitat. Here, we implemented a contingency plan by continuing the genetic-based captive breeding in the event that a self-sustaining wild population was not established. F1 individuals were available as putative breeders from the subset of groups that produced an excess of fish in the original restoration program. We used microsatellite-based parentage analyses of these F1 fish to form breeding groups that minimized inbreeding. We assessed their subsequent parental contribution to F2 individuals and the maintenance of genetic diversity. We found skewed parental contribution to F2 individuals, yet minimal loss of genetic diversity from their parents. However, the diversity was substantially less than that of the original rescued population. We attribute this to the unavoidable use of F1 individuals from a limited number of the original breeding groups. Alternative genetic sources for supplementation or reintroduction should be assessed to determine their suitability. The genetic fate of the captive-bred population highlights the strong need to integrate DNA-based tools for monitoring and adaptive management of captive breeding programs. 相似文献
4.
5.
Aim We propose a phylogenetic hypothesis for the marine‐derived sciaenid genus Plagioscion in the context of geomorphology and adaptation to freshwaters of South America, and assess the extent to which contemporary freshwater hydrochemical gradients influence diversification within a widely distributed Plagioscion species, Plagioscion squamosissimus. Location Amazon Basin and South America. Methods Using nuclear and mitochondrial DNA sequence data, phylogenetic analyses were conducted on the five nominal Plagioscion species, together with representatives from Pachyurus and Pachypops, using character and model‐based methods. Genealogical relationships and population genetic structure of 152 P. squamosissimus specimens sampled from the five major rivers and three hydrochemical settings/‘colours’ (i.e. white, black and clear water) of the Amazon Basin were assessed. Results Phylogenetic analyses support the monophyly of Plagioscion in South America and identify two putative cryptic species of Plagioscion. Divergence estimates suggest that the Plagioscion ancestor invaded South America via a northern route during the late Oligocene to early Miocene. Within P. squamosissimus a strong association of haplotype and water colour was observed, together with significant population structure detected between water colours. Main conclusions Our analyses of Plagioscion are consistent with a biogeographic scenario of early Miocene marine incursions into South America. Based on our phylogenetic results, the fossil record, geomorphological history and distributional data of extant Plagioscion species, we propose that marine incursions into western Venezuela between the late Oligocene and early Miocene were responsible for the adaptation to freshwaters in Plagioscion species. Following the termination of the marine incursions during the late Miocene and the establishment of the modern Amazon River, Plagioscion experienced a rapid diversification. Plagioscion squamosissimus arose during that time. The formation of the Amazon River probably facilitated population and range expansions for this species. Further, the large‐scale hydrochemical gradients within the Amazon Basin appear to be acting as ecological barriers maintaining population discontinuities in P. squamosissimus even in the face of gene flow. Our results highlight the importance of divergent natural selection through time in the generation and maintenance of sciaenid diversity in Amazonia. 相似文献
6.
Seahorses (Syngnathidae: Hippocampus) are iconic marine teleosts that are readily identifiable by their upright posture. The fossil record is inadequate to shed light on the evolution of this trait because it lacks transitional forms. There are, however, extant syngnathid species (the pygmy pipehorses) that look like horizontally swimming seahorses and that might represent a surviving evolutionary link between the benthic seahorses and other, free-swimming members of the family Syngnathidae. Using sequence data from five nuclear loci, we confirm the sister taxon relationship between seahorses and pygmy pipehorses. Molecular dating indicates that the two taxa diverged during the Late Oligocene. During this time, tectonic events in the Indo-West Pacific resulted in the formation of vast amounts of new shallow-water areas and associated expansion of seagrass habitats that would have favoured the seahorses’ upright posture by improving their camouflage while not affecting their manoeuvrability negatively. The molecular techniques employed here provide new insights into the evolution of a taxon whose fossil record is incomplete, but whose evolutionary history is so recent that the major stages of morphological evolution are still represented in extant species. 相似文献
7.
Jonathan Sandoval‐Castillo Catherine R. M. Attard Shashikanth Marri Chris J. Brauer Luciana M. Möller Luciano B. Beheregaray 《Molecular ecology resources》2017,17(2):278-287
Captive breeding programmes are often a necessity for the continued persistence of a population or species. They typically have the goal of maintaining genetic diversity and minimizing inbreeding. However, most captive breeding programmes have been based on the assumption that the founding breeders are unrelated and outbred, even though in situ anthropogenic impacts often mean these founders may have high relatedness and substantial inbreeding. In addition, polygamous group‐breeding species in captivity often have uncertain pedigrees, making it difficult to select the group composition for subsequent breeding. Molecular‐based estimates of relatedness and inbreeding may instead be used to select breeding groups (≥two individuals) that minimize relatedness and filter out inbred individuals. swinger constructs breeding groups based on molecular estimates of relatedness and inbreeding. The number of possible combinations of breeding groups quickly becomes intractable by hand. swinger was designed to overcome this major issue in ex situ conservation biology. The user can specify parameters within swinger to reach breeding solutions that suit the mating system of the target species and available resources. We provide evidence of the efficiency of the software with an empirical example and using simulations. The only data required are a typical molecular marker data set, such as a microsatellite or SNP data set, from which estimates of inbreeding and pairwise relatedness may be obtained. Such molecular data sets are becoming easier to gather from non‐model organisms with next‐generation sequencing technology. swinger is an open‐source software with a user‐friendly interface and is available at http://www.molecularecology.flinders.edu.au/molecular-ecology-lab/software/swinger/swinger/ and https://github.com/Yuma248/Swinger . 相似文献
8.
Eleanor A. L. Pratt Luciano B. Beheregaray Kerstin Bilgmann Nikki Zanardo Fernando Diaz-Aguirre Luciana M. Möller 《Conservation Genetics》2018,19(3):637-654
Little is known about the population ecology of the recently described bottlenose dolphin species Tursiops australis. The classification of this species is still under debate, but this putative species is thought to be comprised of small and genetically distinct populations (including sub-populations under increasing anthropogenic threats) and is likely endemic to coastal southern Australia. Mitochondrial DNA (mtDNA) control region sequences and microsatellite loci were used to assess genetic variation and hierarchical population structure of coastal T. cf. australis across a range of spatial scales and environmental discontinuities between southern Western Australia (WA) and central South Australia (SA). Overall, genetic diversity was similar to that typically found for bottlenose dolphins, although very low mtDNA diversity was found in Gulf St. Vincent (GSV) dolphins. We found historical genetic subdivision and likely differences in colonisation between GSV and Spencer Gulf, outer- and inner-gulf locations, and SA/WA and previously identified Victorian/Tasmanian populations. A hierarchical metapopulation structure was revealed along southern Australia, with at least six genetic populations occurring between Esperance, WA and southern Tasmania. In addition, fine-scale genetic subdivision was observed within each SA/WA population. In general, contemporary migration was limited throughout southern Australia, but an important gene flow pathway was identified eastward along the Great Australian Bight. Management strategies that promote gene flow among populations should be implemented to assist with the maintenance of the inferred metapopulation structure. Further research into the population ecology of this species is needed to facilitate well-informed management decisions. 相似文献
9.
The highly endangered northern hairy-nosed wombat (Lasiorhinus krefftii) is extremely difficult to study in the wild, and its numbers correspondingly difficult to estimate. Disturbance to the animals caused by trapping and radio-tracking may not only constitute an excessive risk to the population's viability, but may also yield biased data. The results of a pilot study are presented, which clearly show noninvasive genotyping to be a highly feasible and reliable alternative censusing method for L. krefftii. The protocol can identify individual wombats from single hairs collected remotely at burrow entrances, using: (i) a panel of microsatellite markers giving individual-specific genotypes; and (ii) a Y-linked sexing marker in combination with a single-copy X-linked amplification control. Using just the eight most variable microsatellites (of 20 available), only one in 200 pairs of full-sibs are predicted to share the same genotype. From 12 wombat hair samples collected on tape suspended over burrow entrances, three known female, two known male and an unknown wombat of each sex were identified. The approach will allow censusing of individuals that evade capture, and will also reveal some otherwise problematic aspects of the behaviour of this elusive animal. 相似文献
10.
Amaral AR Jackson JA Möller LM Beheregaray LB Manuela Coelho M 《Molecular phylogenetics and evolution》2012,64(1):243-253
Lineages undergoing rapid radiations provide exceptional opportunities for studying speciation and adaptation, but also represent a challenge for molecular systematics because retention of ancestral polymorphisms and the occurrence of hybridization can obscure relationships among lineages. Dolphins in the subfamily Delphininae are one such case. Non-monophyly, rapid speciation events, and discordance between morphological and molecular characters have made the inference of phylogenetic relationships within this subfamily very difficult. Here we approach this problem by applying multiple methods intended to estimate species trees using a multi-gene dataset for the Delphininae (Sousa, Sotalia, Stenella, Tursiops, Delphinus and Lagenodelphis). Incongruent gene trees obtained indicate that incomplete lineage sorting and possibly hybridization are confounding the inference of species history in this group. Nonetheless, using coalescent-based methods, we have been able to extract an underlying species-tree signal from divergent histories of independent genes. This is the first time a molecular study provides support for such relationships. This study further illustrates how methods of species-tree inference can be very sensitive both to the characteristics of the dataset and the evolutionary processes affecting the evolution of the group under study. 相似文献