首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   23篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1980年   1篇
  1976年   1篇
  1972年   2篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
2.
The DNA nicking-closing enzyme (type I topoisomerase) from rat liver nuclei breaks single-stranded DNA. The broken strand contains a 5'-hydroxyl and tightly bound protein. The stability of this protein-DNA complex to high salt, alkali and detergent suggests a covalent linkage between the DNA and the enzyme. The observed breakage of single-stranded DNA occurs at neutral pH prior to treatment with alkali or detergent, indicating that the breakage may be the result of an interrupted nicking and closing cycle. The resulting covalent complex could represent a reaction intermediate in the overall nicking-closing reaction.  相似文献   
3.
4.
The glmS ribozyme is a catalytic RNA that self-cleaves at its 5'-end in the presence of glucosamine 6-phosphate (GlcN6P). We present structures of the glmS ribozyme from Thermoanaerobacter tengcongensis that are bound with the cofactor GlcN6P or the inhibitor glucose 6-phosphate (Glc6P) at 1.7 A and 2.2 A resolution, respectively. The two structures are indistinguishable in the conformations of the small molecules and of the RNA. GlcN6P binding becomes apparent crystallographically when the pH is raised to 8.5, where the ribozyme conformation is identical with that observed previously at pH 5.5. A key structural feature of this ribozyme is a short duplex (P2.2) that is formed between sequences just 3' of the cleavage site and within the core domain, and which introduces a pseudoknot into the active site. Mutagenesis indicates that P2.2 is required for activity in cis-acting and trans-acting forms of the ribozyme. P2.2 formation in a trans-acting ribozyme was exploited to demonstrate that N1 of the guanine at position 1 contributes to GlcN6P binding by interacting with the phosphate of the cofactor. At neutral pH, RNAs with adenine, 2-aminopurine, dimethyladenine or purine substitutions at position 1 cleave faster with glucosamine than with GlcN6P. This altered cofactor preference provides biochemical support for the orientation of the cofactor within the active site. Our results establish two features of the glmS ribozyme that are important for its activity: a sequence within the core domain that selects and positions the cleavage-site sequence, and a nucleobase at position 1 that helps position GlcN6P.  相似文献   
5.
Bacillus cereus is an important food-borne pathogen and spoilage organism. In this study, numerous phenotypes and the genomes of B. cereus strains ATCC 14579 and ATCC 10987 were analysed to compare their metabolic capacity and stress resistance potential. The growth performance of the two strains was assessed for nearly 2000 phenotypes, including use of nutrient sources, performance in acid and basic environments, osmo-tolerance and antibiotic resistance. Several food-relevant phenotypic differences were found between ATCC 14579 and ATCC 10987, such as differences in utilization of carbohydrates, peptides, amino acids and ammonia. Subsequently, the genomes of both strains were analysed with INPARANOID to search for strain-specific open reading frames (ORFs). B. cereus ATCC 14579 and ATCC 10987 were found to harbour 983 and 1360 strain-specific ORFs respectively. The strain-specific phenotypic features were interlinked with corresponding genetic features and for several phenotypic differences a related strain-specific genetic feature could be identified. In conclusion, the combination of phenotypic data with strain-specific genomic differences has led to detailed insight into the performance of the two B. cereus strains, and may supply indicators for the performance of these bacteria in different environments and ecological niches.  相似文献   
6.
Enterococcus faecium is an important nosocomial pathogen causing biofilm-mediated infections. Elucidation of E. faecium biofilm pathogenesis is pivotal for the development of new strategies to treat these infections. In several bacteria, extracellular DNA (eDNA) and proteins act as matrix components contributing to biofilm development. In this study, we investigated biofilm formation capacity and the roles of eDNA and secreted proteins for 83 E. faecium strains with different phylogenetic origins that clustered in clade A1 and clade B. Although there was no significant difference in biofilm formation between E. faecium strains from these two clades, the addition of DNase I or proteinase K to biofilms demonstrated that eDNA is essential for biofilm formation in most E. faecium strains, whereas proteolysis impacted primarily biofilms of E. faecium clade A1 strains. Secreted antigen A (SagA) was the most abundant protein in biofilms from E. faecium clade A1 and B strains, although its localization differed between the two groups. sagA was present in all sequenced E. faecium strains, with a consistent difference in the repeat region between the clades, which correlated with the susceptibility of biofilms to proteinase K. This indicates an association between the SagA variable repeat profile and the localization and contribution of SagA in E. faecium biofilms.  相似文献   
7.
The human intestinal tract is colonized by microbial communities that show a subject-specific composition and a high-level temporal stability in healthy adults. To determine whether this is reflected at the functional level, we compared the faecal metaproteomes of healthy subjects over time using a novel high-throughput approach based on denaturing polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry. The developed robust metaproteomics workflow and identification pipeline was used to study the composition and temporal stability of the intestinal metaproteome using faecal samples collected from 3 healthy subjects over a period of six to twelve months. The same samples were also subjected to DNA extraction and analysed for their microbial composition and diversity using the Human Intestinal Tract Chip, a validated phylogenetic microarray. Using metagenome and single genome sequence data out of the thousands of mass spectra generated per sample, approximately 1,000 peptides per sample were identified. Our results indicate that the faecal metaproteome is subject-specific and stable during a one-year period. A stable common core of approximately 1,000 proteins could be recognized in each of the subjects, indicating a common functional core that is mainly involved in carbohydrate transport and degradation. Additionally, a variety of surface proteins could be identified, including potential microbes-host interacting components such as flagellins and pili. Altogether, we observed a highly comparable subject-specific clustering of the metaproteomic and phylogenetic profiles, indicating that the distinct microbial activity is reflected by the individual composition.  相似文献   
8.
9.
10.
The natural substrate cleaved by the hepatitis delta virus (HDV) ribozyme contains a 3',5'-phosphodiester linkage at the cleavage site; however, a 2',5'-linked ribose-phosphate backbone can also be cleaved by both trans-acting and self-cleaving forms of the HDV ribozyme. With substrates containing either linkage, the HDV ribozyme generated 2',3'-cyclic phosphate and 5'-hydroxyl groups suggesting that the mechanisms of cleavage in both cases were by a nucleophilic attack on the phosphorus center by the adjacent hydroxyl group. Divalent metal ion was required for cleavage of either linkage. However, although the 3',5'-linkage was cleaved slightly faster in Ca2+ than in Mg2+, the 2',5'-linkage was cleaved in Mg2+ (or Mn2+) but not Ca2+. This dramatic difference in metal-ion specificity is strongly suggestive of a crucial metal-ion interaction at the active site. In contrast to the HDV ribozymes, cleavage at a 2',5'-phosphodiester bond was not efficiently catalyzed by the hammerhead ribozyme. The relaxed linkage specificity of the HDV ribozymes may be due in part to lack of a rigid binding site for sequences 5' to the cleavage site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号