首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   16篇
  72篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   6篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1996年   3篇
  1951年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
Transport models of growth hormones can be used to reproduce the hormone accumulations that occur in plant organs. Mostly, these accumulation patterns are calculated using time step methods, even though only the resulting steady state patterns of the model are of interest. We examine the steady state solutions of the hormone transport model of Smith et al. (Proc Natl Acad Sci USA 103(5):1301–1306, 2006) for a one-dimensional row of plant cells. We search for the steady state solutions as a function of three of the model parameters by using numerical continuation methods and bifurcation analysis. These methods are more adequate for solving steady state problems than time step methods. We discuss a trivial solution where the concentrations of hormones are equal in all cells and examine its stability region. We identify two generic bifurcation scenarios through which the trivial solution loses its stability. The trivial solution becomes either a steady state pattern with regular spaced peaks or a pattern where the concentration is periodic in time.  相似文献   
2.
Re-orientation of Arabidopsis seedlings induces a rapid, asymmetric release of the growth regulator auxin from gravity-sensing columella cells at the root apex. The resulting lateral auxin gradient is hypothesized to drive differential cell expansion in elongation-zone tissues. We mapped those root tissues that function to transport or respond to auxin during a gravitropic response. Targeted expression of the auxin influx facilitator AUX1 demonstrated that root gravitropism requires auxin to be transported via the lateral root cap to all elongating epidermal cells. A three-dimensional model of the root elongation zone predicted that AUX1 causes the majority of auxin to accumulate in the epidermis. Selectively disrupting the auxin responsiveness of expanding epidermal cells by expressing a mutant form of the AUX/IAA17 protein, axr3-1, abolished root gravitropism. We conclude that gravitropic curvature in Arabidopsis roots is primarily driven by the differential expansion of epidermal cells in response to an influx-carrier-dependent auxin gradient.  相似文献   
3.
West G  Inzé D  Beemster GT 《Plant physiology》2004,135(2):1050-1058
Salt stress inhibits plant growth and development. We investigated the importance of cell cycle regulation in mediating the primary root growth response of Arabidopsis to salt stress. When seedlings were transferred to media with increasing concentrations of NaCl, root growth rate was progressively reduced. At day 3 after transfer of seedlings to growth medium containing 0.5% NaCl the primary roots grew at a constant rate well below that prior to the transfer, whereas those transferred to control medium kept accelerating. Kinematic analysis revealed that the growth reduction of the stressed roots was due to a decrease in cell production and a smaller mature cell length. Surprisingly, average cell cycle duration was not affected. Hence, the reduced cell production was due to a smaller number of dividing cells, i.e. a meristem size reduction. To analyze the mechanism of meristem size adaptation prior to day 3, we investigated the short-term cell cycle events following transfer to saline medium. Directly after transfer cyclin-dependent kinase (CDK) activity and CYCB1;2 promoter activity were transiently reduced. Because protein levels of both CDKA;1 and CDKB1;1 were not affected, the temporary inhibition of mitotic activity that allows adaptation to the stress condition is most likely mediated by posttranslational control of CDK activity. Thus, the adaptation to salt stress involves two phases: first, a rapid transient inhibition of the cell cycle that results in fewer cells remaining in the meristem. When the meristem reaches the appropriate size for the given conditions, cell cycle duration returns to its default.  相似文献   
4.
The struwwelpeter (swp) mutant in Arabidopsis shows reduced cell numbers in all aerial organs. In certain cases, this defect is partially compensated by an increase in final cell size. Although the mutation does not affect cell cycle duration in the young primordia, it does influence the window of cell proliferation, as cell number is reduced during the very early stages of primordium initiation and a precocious arrest of cell proliferation occurs. In addition, the mutation also perturbs the shoot apical meristem (SAM), which becomes gradually disorganized. SWP encodes a protein with similarities to subunits of the Mediator complex, required for RNA polymerase II recruitment at target promoters in response to specific activators. To gain further insight into its function, we overexpressed the gene under the control of a constitutive promoter. This interfered again with the moment of cell cycle arrest in the young leaf. Our results suggest that the levels of SWP, besides their role in pattern formation at the meristem, play an important role in defining the duration of cell proliferation.  相似文献   
5.
To test the role of cortical microtubules in aligning cellulose microfibrils and controlling anisotropic expansion, we exposed Arabidopsis thaliana roots to moderate levels of the microtubule inhibitor, oryzalin. After 2 d of treatment, roots grow at approximately steady state. At that time, the spatial profiles of relative expansion rate in length and diameter were quantified, and roots were cryofixed, freeze-substituted, embedded in plastic, and sectioned. The angular distribution of microtubules as a function of distance from the tip was quantified from antitubulin immunofluorescence images. In alternate sections, the overall amount of alignment among microfibrils and their mean orientation as a function of position was quantified with polarized-light microscopy. The spatial profiles of relative expansion show that the drug affects relative elongation and tangential expansion rates independently. The microtubule distributions averaged to transverse in the growth zone for all treatments, but on oryzalin the distributions became broad, indicating poorly organized arrays. At a subcellular scale, cellulose microfibrils in oryzalin-treated roots were as well aligned as in controls; however, the mean alignment direction, while consistently transverse in the controls, was increasingly variable with oryzalin concentration, meaning that microfibril orientation in one location tended to differ from that of a neighboring location. This conclusion was confirmed by direct observations of microfibrils with field-emission scanning electron microscopy. Taken together, these results suggest that cortical microtubules ensure microfibrils are aligned consistently across the organ, thereby endowing the organ with a uniform mechanical structure.  相似文献   
6.
BACKGROUND AND AIMS: Chilling-stress tolerance is a prerequisite for maize production under cool climatic conditions. The main goal of this study was to evaluate the Central European dent and flint pools for chilling tolerance during heterotrophic and early autotrophic growth in field trials and growth chamber experiments. METHODS: Five European flint and five dent inbreds and their 25 factorial crosses were evaluated in six natural environments, where chilling occurred, for chlorophyll concentration and plant height at the three-leaf stage, and plant height and fresh weight at the seven-leaf stage. In growth chambers, leaf 3 growth was analysed under cold and control conditions. KEY RESULTS: Comparing the field and growth chamber data, the strongest association was found between leaf elongation rate during cold nights and plant height at the three-leaf stage, with a weaker association with the seven-leaf stage. In the field, moderate correlations were observed between plant height at the three-leaf stage, and plant height and fresh weight at the seven-leaf stage, respectively. Furthermore, mid-parent and hybrid performance were only moderately correlated. CONCLUSIONS: The results suggest that heterotrophic and early autotrophic growth stages are controlled by different genetic factors or that maternal effects play a role. In addition, the findings showed that mid-parent performance is a poor predictor of hybrid performance. Consequently, test cross performance should be the target in quantitiative trait locus (QTL) mapping studies with the final goal of establishing marker-assisted breeding programmes for chilling-tolerant hybrids.  相似文献   
7.
8.
Effects of salinity (NaCl) and the carbon source mannitol (0–200 mM) on micropropagation of pineapple cv. MD2 were analyzed in temporary immersion bioreactors (TIBs). Shoot multiplication rate, shoot cluster fresh weight and levels of aldehydes, chlorophylls, carotenoids and phenolics were determined in the plant material. The content of soluble phenolics in the culture medium was also evaluated. NaCl or mannitol above concentrations of 50 mM decreased pineapple shoot multiplication and fresh weight significantly. Two hundred mM NaCl decreased multiplication rate by 71.5% and cluster fresh weight by 40.0%. NaCl increased 2.4 times the levels of other aldehydes; 1.4 times the soluble phenolics in shoots; and 1.4 times the phenolics excreted to the culture medium. On the other hand, mannitol decreased the multiplication rate and cluster fresh weight by about 60%. Mannitol increased the contents of chlorophyll b 1.4 times and soluble phenolics 2.1 times. Results indicated that pineapple cv. MD2 is more sensitive to NaCl than to mannitol. Multiplication rates indicate that a 50% reduction was obtained with 37.4 mM NaCl and 66.5 mM mannitol. These concentrations can be used to stress shoots during micropropagation in TIBs and screen for/detect somaclonal variants with an increased salinity or drought tolerance.  相似文献   
9.
The number of cells in an organ is a major factor that specifies its size. However, the genetic basis of cell number determination is not well understood. To obtain insight into this genetic basis, three grandifolia-D ( gra-D ) mutants of Arabidopsis thaliana were characterized that developed huge leaves with two to three times more cells than the wild-type. Genetic and microarray analyses showed that a large segmental duplication had occurred in all the gra-D mutants, consisting of the lower part of chromosome 4. In the duplications, genes were found that encode AINTEGUMENTA (ANT), a factor that extends the duration of cell proliferation, and CYCD3;1, a G1/S cyclin. The expression levels of both genes increased and the duration of cell proliferation in the leaf primordia was extended in the gra-D mutants. Data obtained by RNAi-mediated knockdown of ANT expression suggested that ANT contributed to the huge-leaf phenotype, but that it was not the sole factor. Introduction of an extra genomic copy of CYCD3;1 into the wild-type partially mimicked the gra-D phenotype. Furthermore, combined elevated expression of ANT and CYCD3;1 enhanced cell proliferation in a cumulative fashion. These results indicate that the duration of cell proliferation in leaves is determined in part by the interaction of ANT and CYCD3;1 , and also demonstrate the potential usefulness of duplication mutants in the elucidation of genetic relationships that are difficult to uncover by standard single-gene mutations or gain-of-function analysis. We also discuss the potential effect of chromosomal duplication on evolution of organ size.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号