首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
Acidity has profound effects on the taste of apples (Malus × domestica). Malic acid is the predominant organic acid in apples. Differences in malic acid content are caused by differences in accumulation of malic acid in the vacuole. This accumulation may be caused by a gene that is responsible for transport of malic acid from the cytosol into the vacuole. Here, we provide evidence that a malic acid transporter gene at the top of chromosome 16 caused significant differences in malic acid concentration and pH of apples. The pH of apples in a segregating F1 population was mapped and at the pH locus (named henceforth Ma locus for malic acid), two putative malic acid transporter genes were detected. These genes show high homology to AtALMT genes that code for malate channel proteins located in vacuolar membrane in Arabidopsis. The expression of one of the candidate genes (Ma1) cosegregated clearly with malic acid content. The inheritance of at least one dominant allele of this gene sufficed for an increased expression level that likely caused the observed threefold increase of the malic acid concentration and the reduction of the pH from 4 to 3 in mature apples, compared to the presence of the recessive, lowly expressed allele only. Our results show that differences in fruit acidity were probably caused by differences in expression levels of alleles of a malic acid transporter gene.  相似文献   
2.
Phage display selects for amylases with improved low pH starch-binding   总被引:5,自引:0,他引:5  
Directed evolution of secreted industrial enzymes is hampered by the lack of powerful selection techniques. We have explored surface display to select for enzyme variants with improved binding performance on complex polymeric substrates. By a combination of saturation mutagenesis and phage display we selected alpha-amylase variants, which have the ability to bind starch substrate at industrially preferred low pH conditions. First we displayed active alpha-amylase on the surface of phage fd. Secondly we developed a selection system that is based on the ability of alpha-amylase displaying phages to bind to cross-linked starch. This system was used to probe the involvement of specific beta-strands in substrate interaction. Finally, a saturated library of alpha-amylase mutants with one or more amino acid residues changed in their Cbeta4 starch-binding domain was subjected to phage display selection. Mutant molecules with good starch-binding and hydrolytic capacity could be isolated from the phage library by repeated binding and elution of phage particles at lowered pH value. Apart from the wild type alpha-amylase a specific subset of variants, with only changes in three out of the seven possible positions, was selected. All selected variants could hydrolyse starch and heptamaltose at low pH. Interestingly, variants were found with a starch hydrolysis ratio at pH 4.5/7.5 that is improved relative to the wild type alpha-amylase. These data demonstrate that useful alpha-amylase mutants can be selected via surface display on the basis of their binding properties to starch at lowered pH values.  相似文献   
3.
4.
Calbindin-D(28K) is suggested to play a postsynaptic role in neurotransmission and in the regulation of the intracellular Ca(2+) concentration. However, it is still unclear whether calbindin-D(28K) has a role in the regulation of exocytosis, either as Ca(2+) buffer or as Ca(2+) sensor. Amperometric recordings of catecholamine exocytosis from wild-type and calbindin-D(28K) knockout mouse chromaffin cells reveal a strong reduction in the number of released vesicles, as well as in the amount of neurotransmitter released per fusion event in knockout cells. However, Ca(2+) current recordings and Ca(2+) imaging experiments, including video-rate confocal laser scanning microscopy, revealed that the intracellular Ca(2+) dynamics are remarkably similar in wild-type and knockout cells. The combined results demonstrate that calbindin-D(28K) plays an important and dual role in exocytosis, affecting both release frequency and quantal size, apparently without strong effects on intracellular Ca(2+) dynamics. Consequently, the possibility that calbindin-D(28K) functions not only as a Ca(2+) buffer but also as a modulator of vesicular catecholamine release is discussed.  相似文献   
5.
Carotenoids, a subfamily of terpenoids, are yellow- to red-colored pigments synthesized by plants, fungi, algae, and bacteria. They are ubiquitous in nature and take over crucial roles in many biological processes as for example photosynthesis, vision, and the quenching of free radicals and singlet oxygen. Due to their color and their potential beneficial effects on human health, carotenoids receive increasing attention. Carotenoids can be classified due to the length of their carbon backbone. Most carotenoids have a C40 backbone, but also C30 and C50 carotenoids are known. All carotenoids are derived from isopentenyl pyrophosphate (IPP) as a common precursor. Pathways leading to IPP as well as metabolic engineering of IPP synthesis and C40 carotenoid production have been reviewed expertly elsewhere. Since C50 carotenoids are synthesized from the C40 carotenoid lycopene, we will summarize common strategies for optimizing lycopene production and we will focus our review on the characteristics, biosynthesis, glycosylation, and overproduction of C50 carotenoids.  相似文献   
6.
Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-trien-12-oic acid, indicating its involvement in chicory sesquiterpene lactone biosynthesis. Likewise, amorpha-4,11-diene was converted to artemisinic acid. Surprisingly, the chicory P450 has a different regio-specificity on (+)-valencene compared to germacrene A and amorpha-4,11-diene.  相似文献   
7.
F-specific RNA phages can be used as model organisms for enteric viruses to monitor the effectiveness of sewage treatment, and to assess the potential contamination of surface water with these viruses. In this paper a method is described which identifies RNA phages quantitatively by a plaque hybridization assay. Oligonucleotide probes were developed that can assign phages to their phylogenetic subgroups. Such a distinction is important, since some subgroups preferentially occur in sewage of human origin, while others tend to be associated with animal wastewater. The method has been tested on a large number of isolates and represents an improvement in time and reliability over the previously used serological classification.  相似文献   
8.
9.
Carboxypeptidase activity participates in the protein digestion process in the gut of lepidopteran insects, supplying free amino-acids to developing larvae. To study the role of different carboxypeptidases in lepidopteran protein digestion, the effect of potato carboxypeptidase inhibitor (PCI) on the digestive system of larvae of the pest insect Helicoverpa zea was investigated, and compared to that of Soybean Kunitz Trypsin Inhibitor. Analysis of carboxypeptidase activity in the guts showed that ingested PCI remained active in the gut, and completely inhibited the activity of carboxypeptidases A and O. Interestingly, carboxypeptidase B activity was not affected by PCI. All previously described enzymes from the same family, both from insect or mammalian origin, have been found to be very sensitive to PCI. Analysis of several lepidopteran species showed the presence of carboxypeptidase B activity resistant to PCI in most of them. The H. zea carboxypeptidase B enzyme (CPBHz) was purified from gut content by affinity chromatography. N-terminal sequence information was used to isolate its corresponding full-length cDNA, and recombinant expression of the zymogen of CPBHz in Pichia pastoris was achieved. The substrate specificity of recombinant CPBHz was tested using peptides. Unlike other CPB enzymes, the enzyme appeared to be highly selective for C-terminal lysine residues. Inhibition by PCI appeared to be pH-dependent.  相似文献   
10.

Background

Production of pharmaceuticals in plants provides an alternative for chemical synthesis, fermentation or natural sources. Nicotiana benthamiana is deployed at commercial scale for production of therapeutic proteins. Here the potential of this plant is explored for rapid production of precursors of artemisinin, a sesquiterpenoid compound that is used for malaria treatment.

Methodology/Principal Findings

Biosynthetic genes leading to artemisinic acid, a precursor of artemisinin, were combined and expressed in N. benthamiana by agro-infiltration. The first committed precursor of artemisinin, amorpha-4,11-diene, was produced upon infiltration of a construct containing amorpha-4,11-diene synthase, accompanied by 3-hydroxy-3-methylglutaryl-CoA reductase and farnesyl diphosphate synthase. Amorpha-4,11-diene was detected both in extracts and in the headspace of the N. benthamiana leaves. When the amorphadiene oxidase CYP71AV1 was co-infiltrated with the amorphadiene-synthesizing construct, the amorpha-4,11-diene levels strongly decreased, suggesting it was oxidized. Surprisingly, no anticipated oxidation products, such as artemisinic acid, were detected upon GC-MS analysis. However, analysis of leaf extracts with a non-targeted metabolomics approach, using LC-QTOF-MS, revealed the presence of another compound, which was identified as artemisinic acid-12-β-diglucoside. This compound accumulated to 39.5 mg.kg−1 fwt. Apparently the product of the heterologous pathway that was introduced, artemisinic acid, is further metabolized efficiently by glycosyl transferases that are endogenous to N. benthamiana.

Conclusion/Significance

This work shows that agroinfiltration of N. bentamiana can be used as a model to study the production of sesquiterpenoid pharmaceutical compounds. The interaction between the ectopically introduced pathway and the endogenous metabolism of the plant is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号