首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
  2013年   1篇
  2012年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1971年   1篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
1.
The complete amino acid sequence of the 61-kDa calmodulin-dependent, cyclic nucleotide phosphodiesterase (CaM-PDE) from bovine brain has been determined. The native protein is a homodimer of N alpha-acetylated, 529-residue polypeptide chains, each of which has a calculated molecular weight of 60,755. The structural organization of this CaM-PDE has been investigated with use of limited proteolysis and synthetic peptide analogues. A site capable of interacting with CaM has been identified, and the position of the catalytic domain has been mapped. A fully active, CaM-independent fragment (Mr = 36,000), produced by limited tryptic cleavage in the absence of CaM, represents a functional catalytic domain. N-Terminal sequence and size indicate that this 36-kDa fragment is comprised of residues 136 to approximately 450 of the CaM-PDE. This catalytic domain encompasses a approximately 250 residue sequence that is conserved among PDE isozymes of diverse size, phylogeny, and function. CaM-PDE and its PDE homologues comprise a unique family of proteins, each having a catalytic domain that evolved from a common progenitor. A search of the sequence for potential CaM-binding sites revealed only one 15-residue segment with both a net positive charge and the ability to form an amphiphilic alpha-helix. Peptide analogues that include this amphiphilic segment were synthesized. Each was found to inhibit the CaM-dependent activation of the enzyme and to bind directly to CaM with high affinity in a calcium-dependent manner. This site is among the sequences cleaved from a 45-kDa chymotryptic fragment that has the complete catalytic domain but no longer binds CaM. These results indicate that residues located between position 23 and 41 of the native enzyme contribute significantly to the binding of CaM although the involvement of residues from additional sites is not excluded.  相似文献   
2.
3.
Several cyclic nucleotide derivatives with aminoalkyl side chains attached to the purine ring were synthesized and their interactions with adenosine 3',5'-monophosphate (cAMP) dependent protein kinase were studied before and after immobilization to CNBr-activated Sepharose 4B. The soluble N6-substituted derivatives were as effective as cAMP itself in activating protein kinase and were more effective than 8-substituted cAMP derivatives, whereas the 2-substituted cAMP derivatives and the cGMP derivatives were the least effective. All of the synthetic derivatives tested were poor substrates for beef heart phosphodiesterase being hydrolyzed at rates less than 2% for that of cAMP itself. Utilizing methodology developed to evaluate the affinity of protein kinase for immogilized cyclic nucleotides it was found that all of the immobilized cyclic nucleotides interacted with protein kinase in a biospecific manner as judged by the following criteria: (1) the immobilized cyclic nucleotides competed with cAMP for the binding sites on protein kinase; (2) the analogous spacer-arm did not compete; and (3) the effects of enzyme concentration, MgATP, and cleavage of the cyclic phosphate ring on the interactions of protein kinase with the immobilized cyclic nucleotides were the same as previously shown for free cAMP. In addition, the immobilized ligands were bound with the same order of effectiveness as the analogous soluble ligand. The observed Ka for the activation of 0.005 muM protein kinase by N6-H2N(CH2)2-cAMP was increased from 0.23 to 3 muM by the process of immobilization. This increase was unaffected by the coupling density and spacer-arm length. The observed Kb for 0.10 muM protein kinase binding to immobilized N6-H2N(CH2)2-cAMP was increased as the molecular sieving exclusion limit of the matrix used was decreased indicating that at least part of this decrease in apparent affinity upon immobilization is due to exclusion of the enzyme from a portion of the matrix and therefore of the immobilized ligand molecules.  相似文献   
4.
The delta subunit of the rod photoreceptor PDE has previously been shown to copurify with the soluble form of the enzyme and to solubilize the membrane-bound form (). To determine the physiological effect of the delta subunit on the light response of bovine rod outer segments, we measured the real time accumulation of the products of cGMP hydrolysis in a preparation of permeablized rod outer segments. The addition of delta subunit GST fusion protein (delta-GST) to this preparation caused a reduction in the maximal rate of cGMP hydrolysis in response to light. The maximal reduction of the light response was about 80%, and the half-maximal effect occurred at 385 nm delta subunit. Several experiments suggest that this effect was not due to the effects of delta-GST on transducin or rhodopsin kinase. Immunoblots demonstrated that exogenous delta-GST solubilized the majority of the PDE in ROS but did not affect the solubility of transducin. Therefore, changes in the solubility of transducin cannot account for the effects of delta-GST in the pH assay. The reduction in cGMP hydrolysis was independent of ATP, which indicates that it was not due to effects of delta-GST on rhodopsin kinase. In addition to the effect on cGMP hydrolysis, the delta-GST fusion protein slowed the turn-off of the system. This is probably due, at least in part, to an observed reduction in the GTPase rate of transducin in the presence of delta-GST. These results demonstrate that delta-GST can modify the activity of the phototransduction cascade in preparations of broken rod outer segments, probably due to a functional uncoupling of the transducin to PDE step of the signal transduction cascade and suggest that the delta subunit may play a similar role in the intact outer segment.  相似文献   
5.
Phosphodiesterases (PDEs) are critical regulatory enzymes in cyclic nucleotide signaling. PDEs have diverse expression patterns within the central nervous system (CNS), show differing affinities for cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), and regulate a vast array of behaviors. Here, we investigated the expression profile of the PDE8 gene family members Pde8a and Pde8b in the mouse brain. We find that Pde8a expression is largely absent in the CNS; by contrast, Pde8b is expressed in select regions of the hippocampus, ventral striatum, and cerebellum. Behavioral analysis of mice with Pde8b gene inactivation (PDE8B KO) demonstrate an enhancement in contextual fear, spatial memory, performance in an appetitive instrumental conditioning task, motor‐coordination, and have an attenuation of age‐induced motor coordination decline. In addition to improvements observed in select behaviors, we find basal anxiety levels to be increased in PDE8B KO mice. These findings indicate that selective antagonism of PDE8B may be an attractive target for enhancement of cognitive and motor functions; however, possible alterations in affective state will need to be weighed against potential therapeutic value .  相似文献   
6.
7.
8.
Although many effects of leptin are mediated through the central nervous system, leptin can regulate metabolism through a direct action on peripheral tissues, such as fat and liver. We show here that leptin, at physiological concentrations, acts through an intracellular signaling pathway similar to that activated by insulin in isolated primary rat hepatocytes. This pathway involves stimulation of phosphatidylinositol 3-kinase (PI3K) binding to insulin receptor substrate-1 and insulin receptor substrate-2, activation of PI3K and protein kinase B (AKT), and PI3K-dependent activation of cyclic nucleotide phosphodiesterase 3B, a cAMP-degrading enzyme. One important function of this signaling pathway is to reduce levels of cAMP, because leptin-mediated activation of both protein kinase B and phosphodiesterase 3B is most marked following elevation of cAMP by glucagon, and because leptin suppresses glucagon-induced cAMP elevation in a PI3K-dependent manner. There is little or no expression of the long form leptin receptor in primary rat hepatocytes, and these signaling events are probably mediated through the short forms of the leptin receptor. Thus, leptin, like insulin, induces an intracellular signaling pathway in hepatocytes that culminates in cAMP degradation and an antagonism of the actions of glucagon.  相似文献   
9.
Nanomolar concentrations of synthetic peptides corresponding to the calmodulin-binding domain of skeletal muscle myosin light chain kinase were found to inhibit calmodulin activation of seven well-characterized calmodulin-dependent enzymes: brain 61 kDa cyclic nucleotide phosphodiesterase, brain adenylate cyclase, Bordetella pertussis adenylate cyclase, red blood cell membrane Ca++-pump ATPase, brain calmodulin-dependent protein phosphatase (calcineurin), skeletal muscle phosphorylase b kinase, and brain multifunctional Ca++ (calmodulin)-dependent protein kinase. Inhibition could be entirely overcome by the addition of excess calmodulin. Thus, the myosin light chain kinase peptides used in this study may be useful antagonists for studying calmodulin-dependent enzymes and processes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号