首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   5篇
  2021年   1篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1994年   2篇
  1985年   1篇
  1982年   3篇
  1981年   3篇
  1976年   1篇
  1975年   2篇
  1961年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
Diatoms, an important group of phytoplankton, bloom annually in the Southern Ocean, covering thousands of square kilometers and dominating the region''s phytoplankton communities. In their role as the major food source to marine grazers, diatoms supply carbon, nutrients and energy to the Southern Ocean food web. Prevailing environmental conditions influence diatom phenotypic traits (for example, photophysiology, macromolecular composition and morphology), which in turn affect the transfer of energy, carbon and nutrients to grazers and higher trophic levels, as well as oceanic biogeochemical cycles. The paucity of phenotypic data on Southern Ocean phytoplankton limits our understanding of the ecosystem and how it may respond to future environmental change. Here we used a novel approach to create a ‘snapshot'' of cell phenotype. Using mass spectrometry, we measured nitrogen (a proxy for protein), total carbon and carbon-13 enrichment (carbon productivity), then used this data to build spectroscopy-based predictive models. The models were used to provide phenotypic data for samples from a third sample set. Importantly, this approach enabled the first ever rate determination of carbon productivity from a single time point, circumventing the need for time-series measurements. This study showed that Chaetoceros simplex was less productive and had lower protein and carbon content during short-term periods of high salinity. Applying this new phenomics approach to natural phytoplankton samples could provide valuable insight into understanding phytoplankton productivity and function in the marine system.  相似文献   
2.
Rising atmospheric CO2 concentrations are predicted to have a significant impact on global phytoplankton populations. Of particular interest in freshwater systems are those species that produce toxins or impact water quality, though evidence for how these species, and many others, will respond is limited. This study investigated the effects of elevated CO2 (1,000 ppm) relative to current atmospheric CO2 partial pressures (400 ppm), on growth, cell size, carbon acquisition, and photophysiology of five freshwater phytoplankton species including a toxic cyanophyte, Raphidiopsis raciborskii, from Lake Wivenhoe, Australia. Effects of elevated CO2 on growth rate varied between species; notably growth rate was considerably higher for Staurastrum sp. and significantly lower for Stichococcus sp. with a trend to lower growth rate for R. raciborskii. Surface area to volume ratio was significantly lower with elevated CO2, for all species except Cyclotella sp. Timing of maximum cell concentrations of those genera studied in monoculture occurred in the lake in order of CO2 affinity when free CO2 concentrations dropped below air equilibrium. The results presented here suggest that as atmospheric levels of CO2 rise, R. raciborskii may become less of a problem to water quality, while some species of chlorophytes may become more dominant. This has implications for stakeholders of many freshwater systems.  相似文献   
3.
Diatoms are the primary source of nutrition and energy for the Southern Ocean ecosystem. Microalgae, including diatoms, synthesise biological macromolecules such as lipids, proteins and carbohydrates for growth, reproduction and acclimation to prevailing environmental conditions. Here we show that three key species of Southern Ocean diatom (Fragilariopsis cylindrus, Chaetoceros simplex and Pseudo-nitzschia subcurvata) exhibited phenotypic plasticity in response to salinity and temperature regimes experienced during the seasonal formation and decay of sea ice. The degree of phenotypic plasticity, in terms of changes in macromolecular composition, was highly species-specific and consistent with each species’ known distribution and abundance throughout sea ice, meltwater and pelagic habitats, suggesting that phenotypic plasticity may have been selected for by the extreme variability of the polar marine environment. We argue that changes in diatom macromolecular composition and shifts in species dominance in response to a changing climate have the potential to alter nutrient and energy fluxes throughout the Southern Ocean ecosystem.  相似文献   
4.
The ongoing ocean acidification associated with a changing carbonate system may impose profound effects on marine planktonic calcifiers. Here, we show that a coccolithophore, Gephyrocapsa oceanica, evolved in response to an elevated CO2 concentration of 1000 μatm (pH reduced to 7.8) in a long‐term (~670 generations) selection experiment. The high CO2‐selected cells showed increases in photosynthetic carbon fixation, growth rate, cellular particulate organic carbon (POC) or nitrogen (PON) production, and a decrease in C:N elemental ratio, indicating a greater upregulation of PON than of POC production under the ocean acidification condition. Cells from the low CO2 selection process shifted to high CO2 exposure showed an enhanced cellular POC and PON production rates. Our data suggest that the coccolithophorid could adapt to ocean acidification with enhanced assimilations of carbon and nitrogen but decreased C:N ratios.  相似文献   
5.
Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280–320 nm), whose flux at the Earth''s surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements  相似文献   
6.
The fate of diazotrophic nitrogen (ND) fixed by planktonic cyanobacteria in pelagic food webs remains unresolved, particularly for toxic cyanophytes that are selectively avoided by most herbivorous zooplankton. Current theory suggests that ND fixed during cyanobacterial blooms can enter planktonic food webs contemporaneously with peak bloom biomass via direct grazing of zooplankton on cyanobacteria or via the uptake of bioavailable ND (exuded from viable cyanobacterial cells) by palatable phytoplankton or microbial consortia. Alternatively, ND can enter planktonic food webs post-bloom following the remineralization of bloom detritus. Although the relative contribution of these processes to planktonic nutrient cycles is unknown, we hypothesized that assimilation of bioavailable ND (e.g., nitrate, ammonium) by palatable phytoplankton and subsequent grazing by zooplankton (either during or after the cyanobacterial bloom) would be the primary pathway by which ND was incorporated into the planktonic food web. Instead, in situ stable isotope measurements and grazing experiments clearly documented that the assimilation of ND by zooplankton outpaced assimilation by palatable phytoplankton during a bloom of toxic Nodularia spumigena Mertens. We identified two distinct temporal phases in the trophic transfer of ND from N. spumigena to the plankton community. The first phase was a highly dynamic transfer of ND to zooplankton with rates that covaried with bloom biomass while bypassing other phytoplankton taxa; a trophic transfer that we infer was routed through bloom-associated bacteria. The second phase was a slowly accelerating assimilation of the dissolved-ND pool by phytoplankton that was decoupled from contemporaneous variability in N. spumigena concentrations. These findings provide empirical evidence that ND can be assimilated and transferred rapidly throughout natural plankton communities and yield insights into the specific processes underlying the propagation of ND through pelagic food webs.  相似文献   
7.
Nutrient Induced Fluorescence Transients (NIFTs) have been shown to be a possible way of testing for the limiting nutrient in algal populations. In this study we tested the hypothesis that NIFTs can be used to detect a (co-)limitation for inorganic phosphorus (Pi) and CO2 in the green alga Chlamydomonas acidophila and that the magnitude of the NIFTs can be related to cellular P:C ratios. We show a co-limitation response for Pi and CO2 via traditional nutrient enrichment experiments in natural phytoplankton populations dominated by C. acidophila. We measured NIFT responses after a Pi- or a CO2-spike in C. acidophila batch cultures at various stages of Pi and inorganic C limitation. Significant NIFTs were observed in response to spikes in both nutrients. The NIFT response to a Pi-spike showed a strong negative correlation with cellular P:C ratio that was pronounced below 3 mmol P: mol C (equivalent to 0.2 pg P cell–1). Both cellular P and C content influenced the extent of the Pi-NIFT response. The NIFT response to a CO2-spike correlated to low CO2 culturing conditions and also had a negative correlation with cellular P content. A secondary response within the Pi-NIFT response was related to the CO2 concentration and potentially reflected co-limitation. In conclusion, NIFTs provided a quick and reliable method to detect the growth-limiting nutrient in an extremophile green alga, under Pi-, CO2- and Pi/CO2 (co-)limited growth conditions.  相似文献   
8.
Photosynthesis in the green alga Dunaliella tertiolecta, as measured by chlorophyll fluorescence, is inhibited by ultraviolet radiation and specifically, under the conditions used, by UVB radiation (UVBR). The decline in the fluorescence parameters Fv/Fm and ΔF/Fm' under constant UVBR is a first-order function of time of exposure. The data are well-described by the Kok (1956) model, which assumes a dynamic interaction between damage and repair, with repair being proportional to the pool size of inactivated targets. The pattern of photoinhibition is also consistent with the Kok model, in that it shows an initial, approximately linear phase which is time-dependent (reciprocity holds), a transition phase and then an asymptotic phase, representing an equilibrium between damage and repair, which is determined by UVBR fluence rate (reciprocity fails). Photoinhibition in the presence of lincomycin, a protein synthesis inhibitor, is consistent with the cessation of repair processes and, under these conditions, photoinhibition is proportional to exposure time. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
9.
Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain, suggesting negative effects of global climate change on microalgae inhabiting (circum-) polar regions. For temperate and tropical strains of Chlorella, damage from UVR was independent of temperature but the repair constant increased with increasing temperature, implying an improved ability of these strains to recover from UVR stress under global warming.  相似文献   
10.
An in vivo method for predicting the nutrient status of individual algal cells using Raman microspectroscopy is described. Raman spectra of cells using 780 nm laser excitation show enhanced bands mainly attributable to chlorophyll a and beta-carotene. The relative intensities of chlorophyll a and beta-carotene bands changed under nitrogen limitation, with chlorophyll a bands becoming less intense and beta-carotene bands more prominent. Although spectra from N-replete and N-starved cell populations varied, each distribution was distinct enough such that multivariate classification methods, such as partial least squares discriminant analysis, could accurately predict the nutrient status of the cells from the Raman spectral data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号