首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   10篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   3篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   7篇
  2011年   9篇
  2010年   6篇
  2009年   2篇
  2008年   7篇
  2007年   2篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1996年   2篇
  1995年   4篇
  1992年   2篇
  1990年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1971年   2篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有130条查询结果,搜索用时 46 毫秒
1.
Evaluations of reproductive and developmental toxicology, including teratology, were included as part of a broad screening study in Hanford Miniature swine (HMS) to detect effects of exposure to electric fields. One group (E) was exposed to a uniform, vertical, 60-Hz, 30-kV/m electric field for 20 h/day, 7 days/week; sham-exposed (SE) swine were housed in a separate, environmentally equivalent building. The first generation (F0) gilts were bred after 4 months of study; some were killed for teratologic assays at 100 days of gestation (dg), and the others produced an F1 generation of offspring. The pooled incidence of terata in these litters (teratologic assays and live births) was similar in the E and SE groups. The F0 females, which produced the F1 generation, were bred again after 18 months of exposure and were killed at 100 dg. Malformation incidence in E litters (75%) was significantly greater than in SE litters (29%). No consistent differences in litter size, fetal mass, or mass of fetal organs were detected. The F1 gilts were bred at 18 months of age; defective offspring were found in significantly more of the E litters (71%) than in SE litters (33%). These F1 females were bred again 10 months later and teratologic assays were performed on their second litters at 100 dg. The percentage of litters with malformed fetuses was essentially identical in the E and SE groups (70% and 73%, respectively). There appears to be an association between chronic exposure to a strong electric field and developmental effects in swine, although the change in incidence of malformations between generations and between the first and second breedings makes it impossible to conclude unequivocally that there is a cause-and-effect relation.  相似文献   
2.
Restriction fragments analysis of DNA from mouse-hamster somatic-cell hybrid clones revealed that a mouse gamma crystallin cDNA hybridized to genomic sequences located on mouse chromosome 1. Identification of restriction fragment length polymorphisms (RFLPs) in the gamma crystallin sequences of inbred strains of mice permitted the further localization of the gamma crystallin genes (Cryg) to the proximal region of chromosome 1 closely linked to the loci encoding isocitrate dehydrogenase (Idh-1), a low molecular weight (LM) crystallin protein polymorphism (Len-1), and fibronectin (Fn-1). A single recombinant was observed betweenLen-1 and an RFLP in the gamma crystallin gene family, consistent with the hypothesis thatLen-1 is one of the several structural loci encoding gamma crystallin genes.Len-1 is probably located on the centromeric end of theCryg gene family. Linkage ofIdh-1, Cryg, andFn-1 in mice extends the syntenic relationship of those loci to the human, bovine, and rodent genomes and may define a chromosomal region that is generally conserved among mammals. The map position ofCryg, near the eye lens obsolescence (Elo) locus, was confirmed by the discovery that the restriction fragment patterns of gamma crystallin sequences differed between strain C3H/HeJ and the congenic anophthalmic mutant strain, C3H.Elo. Therefore, the gamma crystallin genes were contransferred with the mutantElo gene in the derivation of C3H.Elo. The results establish that LEN-1 is a marker for the gamma crystallin gene family, position the gamma crystallin gene family relative to other markers on mouse chromosome 1, and provide additional evidence that theElo mutation is encoded at a locus closely linked to the gamma crystallin gene cluster. This study found no evidence of recombination hot spots within the gamma crystallin gene cluster.  相似文献   
3.
Amador  A.  Parkening  T.  Beamer  W.  Bartke  A.  Collins  T. J. 《Biochemical genetics》1984,22(5-6):395-401
The autoregulation of testicular luteinizing hormone (LH) receptors was studied in hypogonadal (hpg/hpg) and normal mice. The basal concentration of LH receptors was more than three-fold higher in hpg/hpg than in normal mice. After injection of hCG, hpg/hpg mice showed a decrease in LH receptor levels which was not observed in normal mice. Plasma testosterone was undetectable in hpg/hpg mice, even after treatment with a single dose of hCG. Plasma prolactin levels were higher in hpg/hpg than in normal mice. The increase in basal LH receptor levels is thought to be due to a compensatory mechanism in which elevated prolactin could play a role. The differences between hpg/hpg and normal mice in the autoregulation of LH receptors observed could be due to the hypersensitivity of the physiologically immature testis in hpg/hpg mice to the action of hCG, to gonadotropin deficiency, particularly during the earlier stages of development, or to a direct effect of the hpg locus on the metabolism of LH receptors.These studies were supported by NIH Grants HD 12642 and HD 12671 (AB) and Grant CA-24145 (WGB).  相似文献   
4.
Cortical granules, which are specialized secretory organelles found in ova of many organisms, have been isolated from the eggs of the sea urchins Arbacia punctulata and Strongylocentrtus pupuratus by a simple, rapid procedure. Electron micropscope examination of cortical granules prepared by this procedure reveals that they are tightly attached to large segments of the plasma membrane and its associated vitelline layer. Further evidence that he cortical granules were associated with these cell surface layers was obtained by (125)I-labeling techniques. The cortical granule preparations were found to be rich in proteoesterase, which was purified 32-fold over that detected in a crude homogenate. Similarly, the specific radioactivity of a (125)I-labeled, surface glycoprotein was increased 40-fold. These facts, coupled with electron microscope observations, indicate the isolation procedure yields a preparation in which both the cortical granules and the plasma membrane-vitelline layer are purified to the same extent. Gel electrophoresis of the membrane-associated cortical granule preparation reveals the presence of at least eight polypeptides. The major polypeptide, which is a glycotprotein of apparent mol wt of 100,000, contains most of the radioactivity introduced by (125)I-labeling of the intact eggs. Lysis of the cortical granules is observed under hypotonic conditions, or under isotonic conditions if Ca(2+) ion is present. When lysis is under isotonic conditions is induced by addition of Ca(2+) ion, the electron-dense contents of the granules remain insoluble. In contrast, hypotonic lysis results in release of the contents of the granule in a soluble form. However, in both cases the (125)I-labeled glycoprotein remains insoluble, presumably because it is a component of either the plasma membrane or the vitelline layer. All these findings indicate that, using this purified preparation, it should be possible to carry out in vitro studies to better define some of the initial, surface-related events observed in vivo upon fertilization.  相似文献   
5.
6.
7.
A high-throughput screen (HTS) of the MLPCN library using a homogenous fluorescence polarization assay identified a small molecule as a first-in-class direct inhibitor of Keap1–Nrf2 protein–protein interaction. The HTS hit has three chiral centers; a combination of flash and chiral chromatographic separation demonstrated that Keap1-binding activity resides predominantly in one stereoisomer (SRS)-5 designated as ML334 (LH601A), which is at least 100× more potent than the other stereoisomers. The stereochemistry of the four cis isomers was assigned using X-ray crystallography and confirmed using stereospecific synthesis. (SRS)-5 is functionally active in both an ARE gene reporter assay and an Nrf2 nuclear translocation assay. The stereospecific nature of binding between (SRS)-5 and Keap1 as well as the preliminary but tractable structure–activity relationships support its use as a lead for our ongoing optimization  相似文献   
8.
The spontaneous development of juvenile-onset, ovarian granulosa cell (GC) tumors in the SWR/Bm (SWR) inbred mouse strain is a model for juvenile-type GC tumors that appear in infants and young girls. GC tumor susceptibility is supported by multiple Granulosa cell tumor (Gct) loci, but the Gct1 locus on Chr 4 derived from SWR strain background is fundamental for GC tumor development and uniquely responsive to the androgenic precursor dehydroepiandrosterone (DHEA). To resolve the location of Gct1 independently from other susceptibility loci, Gct1 was isolated in a congenic strain that replaces the distal segment of Chr 4 in SWR mice with a 47 × 106-bp genomic segment from the Castaneus/Ei (CAST) strain. SWR females homozygous for the CAST donor segment were confirmed to be resistant to DHEA- and testosterone-induced GC tumorigenesis, indicating successful exchange of CAST alleles (Gct1 CA ) for SWR alleles (Gct1 SW ) at this tumor susceptibility locus. A series of nested, overlapping, congenic sublines was created to fine-map Gct1 based on GC tumor susceptibility under the influence of pubertal DHEA treatment. Twelve informative lines have resolved the Gct1 locus to a 1.31 × 106-bp interval on mouse Chr 4, a region orthologous to human Chr 1p36.22.  相似文献   
9.
One QTL and genes and phenotypes have been localized in the region between 92 cM and 95cM of mouse chromosome 1. The QTL locus contributes to approximately 40% of the variation of the peak bone density between C57BL/6J (B6) and CAST/EiJ (CAST) strains. Other loci located in this chromosomal region include a neural tube defect mutant loop-tail (Lp), a lymphocyte-stimulating determinant (Lsd), and the Transgelin 2 (Tagln 2). The human chromosome region homologous to this region is 1q21-23, which also contains a QTL locus for high bone mineral density (BMD). Furthermore, it has been reported that this region may have duplicated several times in the mouse genome. Therefore, genomic sequencing of this region will provide important information for mouse genome structure, for positional cloning of mouse genes, and for the study of human homologous genes. In order to provide a suitable template for genomic sequencing by the NIH-sponsored genomic centers, we have constructed a BAC contig of this region using the RPCI-23 library. We have also identified the currently available mouse genomic sequences localized in our BAC contig. Further analysis of these sequences and BAC clones indicated a high frequency of repetitive sequences within this chromosomal area. This region also contains L1 retrotransposon sequences, providing a potential mechanism for the repetitive sequences described in the literature.  相似文献   
10.
The rationale for use of inbred strains of mice in bone research is well recognized and includes: a) practical factors (economics of scale, rapid development of adult status, pre-existing knowledge, down-sized technologies) and b) proven methodologies for genetic studies (polygenic trait analyses, mapping tools, genomic sequencing, methods for gene manipulation). Initial investigations of inbred strains of mice showed that femoral and lumbar vertebral volumetric bone mineral density (BMD, mg/mm(3)) by pQCT varied in excess of 50% for femurs and 9% in vertebral BMD. Two strains - low BMD C57BL/6J (B6) mice and high BMD C3H/HeJ (C3H) - were investigated for insights to their BMD diversity. B6C3F2 females derived from intercrossing B6C3F1s were raised to adult skeletal status at 4 months, then necropsied for phenotyping of bone and genotyping of genomic DNA. 1000 F2 females were genotyped for PCR product polymorphisms on all 19 autosomes at approximately 15 cM. Genome wide analyses for genotype-phenotype correlations showed 10 chromosomes (Chrs) carried genes for femoral and 7 Chrs for vertebral BMD. LOD scores ranged from 2.90 to 24.4, and percent of F2 variance accounted for ranged from 1 to 10%. Analyses of main effects revealed both dominant-recessive and additive inheritance patterns. Both progenitor strains carried alleles with positive and negative effects on BMD of each bone sites. A remarkable array of additonal skeletal phenotypes (femur and vertebral geometry, strength measures, serum markers) also proved polygenic in nature, with complex segregation patterns. Verification of BMD quantitative trait loci (QTLs) was undertaken by creating congenic B6 strains carrying individual QTL regions from C3H. Following 6 cycles of backcrossing a QTL-containing region from C3H to the B6 strain, N6F2 congenic strain mice were aged to 4 months, then genotyped for the QTL region and phenotyped for skeletal traits. Comparison of mice homozygous for C3H alleles versus homozygous for B6 alleles in the QTL regions showed that femoral BMD increased or decreased significantly in congenic strains, as was predicted from F2 data. Gender differences specific to BMD QTLs have been revealed, as have more than 30 additional phenotypes associated with cortical and trabecular structural parameters and biomechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号