首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2020年   1篇
  2018年   1篇
  2006年   1篇
  2005年   1篇
  1989年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
In 1991-1993 we amended a DNA-protein recognition model advanced in 1975. Here we test our assumptions with a specially designed tripeptide L-Thr-L-Val-L-Thr-NH-NH-Dns (Dns is 5-dimethylaminonaphthalene-1-sulfonic acid residue). It is shown to dimerize in solution (as evidenced by the nonlinear concentration dependence of its fluorescence) and to bind with DNA mainly in beta-dimeric form (S-shaped adsorption isotherm obtained by equilibrium dialysis). The tripeptide is bound in the DNA minor groove (whence it can be displaced with distamycin A), and such complexes become able to associate into 'biduplex' structures (nonlinear dependence of the linear dichroism of bound peptide on DNA concentration). The peptide dimers clearly prefer the AT pairs [half-saturating peptide concentrations are (0.6-0.7) x 10(-4) M for poly(dA).poly(dT) but exceed (2.5-2.8) x10(-4) M for poly(dG).poly(dC)]. These results agree nicely with our earlier suggestions. Since Dns-tagged trivaline has been shown to prefer the GC pairs, we think it now becomes possible to design oligopeptides that would specifically bind to any predefined nucleotide sequence.  相似文献   
2.
1. The capacity of two-component ribonucleotidyl transferase to catalyze pyrophosphorolysis of polyribonucleotides is studied. 2. It is shown that nucleoside diphosphates (NDP), not being substrates for the enzyme, activate both the synthesis and pyrophosphorolysis of polynucleotides by the enzyme. The concentration of NDP is important for this effect: with an increase of NDP concentration the rate of synthesis increases and reaches a plateau at 10(-5) M NDP, while the rate of pyrophosphorolysis, attaining maximal values at 10(-5)--10(-3) M NDP, decreases with a further increase of NDP concentration. 3. The possible biological role of two-component ribonucleotidyl transferase is discussed.  相似文献   
3.
In silico molecular docking of the trimer repeating unit of chondroitin sulfate (sulfated hexasaccharide) and tetramer repeating unit of heparin (sulfated octasaccharide) to the 3D model of bovine testicular hyaluronidase by the methods of computational chemistry demonstrated the presence of eight significant binding sites for these ligands (cs1–cs8). The interaction of the active site of the enzyme with the heparin ligand, which inactivates the enzyme, and the protective effect of the chondroitin sulfate ligands bound to the surface sites of the biocatalyst molecule were theoretically studied using calculation approaches. We sequentially determined binding sites for the chondroitin sulfate ligands (in positions cs2, cs4, cs7, cs8 or cs1, cs2, cs4, cs7, cs8) critical for the protein structure stabilization, whose occupancy is theoretically sufficient to prevent irreversible deformations of the enzyme molecule when the heparin ligand is introduced into the cavity of its active site. Theoretical detection of these ‘sensibility points’ on the hyaluronidase globule indicates the possibility of regulating its functioning under the binding of the glycosaminoglycan ligands that initiate the fine formation of an effective type of the surface electrostatic potential. The interaction of the glycosaminoglycan ligands with hyaluronidase is mainly determined by electrostatic forces.  相似文献   
4.
Termination of RNA synthesis with 3'-O-Methylnucleoside 5'-triphosphates have been studied using E. coli RNA polymerase holoenzyme and poly [d(A-T)] as well as unfractionated T7 D delta III DNA as templates. It was shown that the termination can be used for DNA sequencing. A sequence of a part of RNA synthesized from AI promoter of the DNA have been determined. Syntheses of four 3'-O-Methylnucleoside 5'-triphosphates are described.  相似文献   
5.
6.
A study was made of the association of the RNA components forming a B:LS two-component rans analog of the antigenomic HDV ribozyme. The B:LS ribozyme differed from known trans ribozymes in the sizes and nucleotide sequences of its components (33 and 34 nt, respectively), the topology of its functional parts, and the lack of a very short cleavage product. Compared to the cis ribozyme, B:LS showed similar dependences on the reaction conditions (Mg2+ concentration, pH, temperature) and a similar biphasic kinetic curve of self-cleavage. The kinetic model of B:LS self-cleavage (available at www.cardio.ru/labgen/RZ_e.html) describes a possible cause of the biphasic kinetic curve as a change in the rate-limiting step of consecutive conformational transitions accompanying self-cleavage. Another possible cause is an interaction between the molecules involved in cleavage, i.e., multimerization of whole ribozyme molecules with their components or the reaction products. B:LS provides a convenient model for studying such interactions, since the mode of component binding allows generation of 1B:2LS and 2B:1LS complexes as well as complexes with the cleavage products. Nondenaturing PAGE was used to study the factors affecting association and dissociation of the ribozyme components. The possibility of interactions between the RNA components of the cis and trans ribozymes was demonstrated experimentally. It was shown that the ribozyme is capable of multimerization when LS is in excess over B and that the cleavage products are not significantly involved in this process. The results suggest intermolecular interactions for the cleavage of the natural cis ribozyme.  相似文献   
7.
Russian Journal of Bioorganic Chemistry - Molecular docking of a 3D model of bovine testicular hyaluronidase was performed with dimers and trimers of chondroitin. On the molecular surface of a...  相似文献   
8.
Some properties of an enzyme designated as a two-component ribonucleotidyl transferase from E. coli are presented. The enzyme in the presence of magnesium ions catalyzes the synthesis of polyribonucleotide chains using all four nucleoside triphosphates as substrates. The enzyme consists of two components; component A in the presence of Mg2+ catalyzes the synthesis of homo- and heteropolymers using ATP, CTP and UTP but not GTP as substrates. Component B itself does not catalyze any synthesis at all, but its addition to component A affects this component in two ways: quantitatively—the activity of component A considerably increases, and qualitatively—both components together are capable of catalyzing the synthesis of polyribonucleotides consisting of all four ribonucleotides.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号