首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   16篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   13篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   9篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1953年   1篇
排序方式: 共有129条查询结果,搜索用时 19 毫秒
1.
2.
3.
The 27-amino-acid gastrin-releasing peptide (GRP1-27) is a neuropeptide and growth factor that is synthesized by various neural and neuroendocrine cells. The major pro-GRP hormone (isoform I) contains both GRP1-27 and a novel C-terminal extension peptide termed pro-GRP31-125. In order to define potentially active neuropeptides that could be generated from this novel protein domain, we analyzed the posttranslational processing of endogenous human pro-GRP1-125 in a small-cell lung cancer cell line. Because such studies are much easier in an overexpression system, we investigated at the same time the posttranslational processing of baculovirus-expressed human pro-GRP1-125 in an insect ovary cell line. In the small-cell lung cancer cell line, GRP1-27 was cleaved as expected from the endogenous prohormone at a pair of basic amino acids (29 and 30) and alpha-amidated at its C-terminal methionine; however, a number of novel peptides were generated by additional cleavages in the pro-GRP31-125 domain. In the insect ovary cell line, GRP1-27 was cleaved from the expressed prohormone by a different mechanism, as were a number of other peptides that appeared to be similar in size to those produced by the human neuroendocrine tumor cell line. These data show for the first time that an insect ovary cell line that is widely used to overexpress proteins can process a human neuropeptide precursor. They also reveal the existence of novel pro-GRP-derived peptides that are candidates for biologically active ligands.  相似文献   
4.
5.
The phylogeny of Greya Busck (Lepidoptera: Prodoxidae) was inferred from nucleotide sequence variation across a 765-bp region in the cytochrome oxidase I and II genes of the mitochondrial genome. Most parsimonious relationships of 25 haplotypes from 16 Greya species and two outgroup genera (Tetragma and Prodoxus) showed substantial congruence with the species relationships indicated by morphological variation. Differences between mitochondrial and morphological trees were found primarily in the positions of two species, G. variabilis and G. pectinifera, and in the branching order of the three major species groups in the genus. Conflicts between the data sets were examined by comparing levels of homoplasy in characters supporting alternative hypotheses. The phylogeny of Greya species suggests that host-plant association at the family level and larval feeding mode are conservative characters. Transition/transversion ratios estimated by reconstruction of nucleotide substitutions on the phylogeny had a range of 2.0-9.3, when different subsets of the phylogeny were used. The decline of this ratio with the increase in maximum sequence divergence among taxa indicates that transitions are masked by transversions along deeper internodes or long branches of the phylogeny. Among transitions, substitutions of A-->G and T-->C outnumbered their reciprocal substitutions by 2-6 times, presumably because of the approximately 4:1 (77%) A+T-bias in nucleotide base composition. Of all transversions, 73%-80% were A<-->T substitutions, 85% of which occurred at third positions of codons; these estimates did not decrease with an increase in maximum sequence divergence of taxa included in the analysis. The high frequency of A<-->T substitutions is either a reflection or an explanation of the 92% A+T bias at third codon positions.   相似文献   
6.
Reversion of flowering   总被引:1,自引:0,他引:1  
Reversion from floral to vegetative growth is under environmental control in many plant species. However the factors regulating floral reversion, and the events at the shoot apex that take place when it occurs, have received less attention than those associated with the transition to flowering. Reversions may be categorized as flower reversion, in which the flower meristem resumes leaf production, or inflorescence reversions, in which the meristem ceases to initiate bracts with flowers in their axils and begins instead to make leaves with vegetative branches in their axils. Related to these two types of reversion, but distinct from them, are examples of partial flowering, when non-floral meristems grow out so that the plant begins to grow vegetatively again. Anomalous or proliferous flowers may form as a result of unfavourable growth conditions or viral infection, but these do not necessarily involve flower reversions.  相似文献   
7.
Analysis of a group of human/rodent somatic cell hybrids with nucleic acid probes prepared from cloned human variable region (VH), junctional (JH), and constant region (C epsilon) heavy chain immunoglobulin genes indicates that all of these IgH genes are localized on the subtelomeric (q32) band of chromosome 14. Somatic cell hybrids were isolated in selective medium after fusing human fibroblasts with hprt- Chinese hamster cells. The human parental cells contained two translocation chromosomes representing a reciprocal translocation between chromosomes X and 14. Only those hybrid cell lines retaining a complete human autosome 14 or the X/14 translocation chromosome (i.e. containing band 14q32) retained the human IgH genes. Retention of these genes did not correlate with the presence of the other translocation chromosome, 14/X. These results indicate that all human IgH genes (VH, JH, and CH) map to the same chromosomal band (14q32) which is commonly involved in reciprocal translocations with human chromosome 8 (8q24) in B-cell neoplasms.  相似文献   
8.
Identification of a novel member of the T1R family of putative taste receptors   总被引:25,自引:0,他引:25  
In the gustatory system, the recognition of sugars, amino acids and bitter-tasting compounds is the function of specialized G protein-coupled receptors. Recently, two members of novel subfamily of G protein-coupled receptors were proposed to function as taste receptors based on their specific expression in taste receptor cells. Here, we report the identification of a third member, T1R3, of this family of receptors. T1R3 maps near the telomere of mouse chromosome 4 rendering it a candidate for the Sac locus, a primary determinant of sweet preference in mice. Consistent with its candidacy for the Sac locus, T1R3 displays taste receptor cell-specific expression. In addition, taster and non-taster strains of mouse harbor different alleles of T1R3.  相似文献   
9.
BACKGROUND AND AIMS: The aims of this investigation were to highlight the qualitative and quantitative diversity apparent between nine diploid Fragaria species and produce interspecific populations segregating for a large number of morphological characters suitable for quantitative trait loci analysis. METHODS: A qualitative comparison of eight described diploid Fragaria species was performed and measurements were taken of 23 morphological traits from 19 accessions including eight described species and one previously undescribed species. A principal components analysis was performed on 14 mathematically unrelated traits from these accessions, which partitioned the species accessions into distinct morphological groups. Interspecific crosses were performed with accessions of species that displayed significant quantitative divergence and, from these, populations that should segregate for a range of quantitative traits were raised. KEY RESULTS: Significant differences between species were observed for all 23 morphological traits quantified and three distinct groups of species accessions were observed after the principal components analysis. Interspecific crosses were performed between these groups, and F2 and backcross populations were raised that should segregate for a range of morphological characters. In addition, the study highlighted a number of distinctive morphological characters in many of the species studied. CONCLUSIONS: Diploid Fragaria species are morphologically diverse, yet remain highly interfertile, making the group an ideal model for the study of the genetic basis of phenotypic differences between species through map-based investigation using quantitative trait loci. The segregating interspecific populations raised will be ideal for such investigations and could also provide insights into the nature and extent of genome evolution within this group.  相似文献   
10.
Knowledge of the genetic diversity of a species is important for the choice of crossing parents in line and hybrid breeding. Our objective was to investigate European winter triticale using simple sequence repeat (SSR) markers and the coancestry coefficient (f) with regard to genetic diversity and grouping of germplasm. Three to five primer pairs for each of the 42 chromosomes were selected to analyse 128 European winter triticale varieties and breeding lines. SSR analysis resulted in the identification of 657 alleles with an average of 6.8 alleles per primer pair. The average polymorphism information content (PIC) for polymorphic markers was 0.54. Correlation between f and genetic similarity (GS) estimates based on Rogers Distance was low (rf×GS(ABDR)=0.33). The analysis of molecular variance (AMOVA) revealed that 84.7% of the total variation was found within breeding companies, and 15.3% among them. In conclusion, SSR markers from wheat and rye provide a powerful tool for assessing genetic diversity in triticale. Even though no distinct groups within the European winter triticale pool could be detected by principal co-ordinate analysis, this study provides basic information about the genetic relationships for breeding purposes.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by H.C. Becker  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号