首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
  2023年   3篇
  2019年   2篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2007年   1篇
  2006年   3篇
  2004年   4篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   6篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1982年   1篇
  1980年   1篇
  1977年   2篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
2.
Rare earth metals play a conspicuous role in magnetic resonance imaging (MRI) for detecting cancerous cells. The alkali metal potassium is a neurotransmitter in the sodium–potassium pump in biomedical sciences. This unique property of rare earth metals and potassium drew our attention to carry forward this study. Therefore, in this work, previously synthesized potassium (K) complexes formed by the reflux of 4-N,N-dimethylaminobenzoic acid (DBA) and potassium hydroxide in methanol, and named [(μ2–4-N,N-dimethylaminobenzoate-κO)(μ2–4-N,N-dimethylaminobenzoic acid-κO)(4-N,N-dimethylaminobenzoic acid-κO) potassium(I) coordination polymer)] were treated hydrothermally with La2O3 nanomaterials to obtain a nanohybrid La2O3/K-complex. After that, the K-complex was analyzed using single-crystal X-ray diffraction and 1H and 13C NMR spectroscopy. In addition, the structural and morphological properties of the as-prepared nanostructured La2O3/K-complex were also characterized, which involved an investigation using X-ray diffraction (XRD)spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force spectroscopy (AFM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) analysis. After this, the electrochemical redox behaviour of the synthesized nanohybrid material was studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Therefore, the results from these studies revealed that the as-prepared material was a La2O3/K-complex that has a promising future role in sensing various analytes, as it showed effective electrocatalytic behaviour.  相似文献   
3.
KJ Wynne  GW Swain  RB Fox  S Bullock  J Uilk 《Biofouling》2013,29(2-4):277-288

Two silicone coatings have been evaluated for barnacle adhesion. One coating is an unfilled hydrosilation cured polydimethylsiloxane (PDMS) network, while the other is a room temperature vulcanized (RTV), filled, ethoxysiloxane cured PDMS elastomer, RTV11?. The adhesion strength of one species of barnacle, Balanus eburneus, to the hydrosilation coatings is in the range of 0.37–0.60 kg cm‐2 while the corresponding range for RTV11 is 0.64–0.90 kg cm‐2. The easier release of B. eburneus from the hydrosilation cured network compared to RTV11 is discussed in relationship to differences in bulk and surface properties. Preliminary results suggest bulk modulus may be the most important parameter in determining barnacle adhesion strength. In light or mechanical property analysis, a re‐evaluation of surface properties and chemical stability is presented.  相似文献   
4.
l ‐Tyrosine is an essential aromatic amino acid required for the synthesis of proteins and a diverse array of plant natural products; however, little is known on how the levels of tyrosine are controlled in planta and linked to overall growth and development. Most plants synthesize tyrosine by TyrA arogenate dehydrogenases, which are strongly feedback‐inhibited by tyrosine and encoded by TyrA1 and TyrA2 genes in Arabidopsis thaliana. While TyrA enzymes have been extensively characterized at biochemical levels, their in planta functions remain uncertain. Here we found that TyrA1 suppression reduces seed yield due to impaired anther dehiscence, whereas TyrA2 knockout leads to slow growth with reticulate leaves. The tyra2 mutant phenotypes were exacerbated by TyrA1 suppression and rescued by the expression of TyrA2, TyrA1 or tyrosine feeding. Low‐light conditions synchronized the tyra2 and wild‐type growth, and ameliorated the tyra2 leaf reticulation. After shifting to normal light, tyra2 transiently decreased tyrosine and subsequently increased aspartate before the appearance of the leaf phenotypes. Overexpression of the deregulated TyrA enzymes led to hyper‐accumulation of tyrosine, which was also accompanied by elevated aspartate and reticulate leaves. These results revealed that TyrA1 and TyrA2 have distinct and overlapping functions in flower and leaf development, respectively, and that imbalance of tyrosine, caused by altered TyrA activity and regulation, impacts growth and development of Arabidopsis. The findings provide critical bases for improving the production of tyrosine and its derived natural products, and further elucidating the coordinated metabolic and physiological processes to maintain tyrosine levels in plants.  相似文献   
5.
6.
BACKGROUND: There are several reports that indicate a linkage between exposure to power frequency (50 - 60 Hz) magnetic fields with abnormalities in the early embryonic development of the chicken. The present study was designed to understand whether power frequency electromagnetic fields could act as an environmental insult and invoke any neurochemical or toxicological changes in developing chick embryo model. METHODS: Fertilized chicken eggs were subjected to continuous exposure to magnetic fields (50 Hz) of varying intensities (5, 50 or 100 microT) for a period of up to 15 days. The embryos were taken out of the eggs on day 5, day 10 and day 15. Neurochemical (norepinephrine and 5-hydroxytryptamine) and amino acid (tyrosine, glutamine and tryptophan) contents were measured, along with an assay of the enzyme glutamine synthetase in the brain. Preliminary toxicological investigations were carried out based on aminotransferases (AST and ALT) and lactate dehydrogenase activities in the whole embryo as well as in the liver. RESULTS: The study revealed that there was a significant increase (p < 0.01 and p < 0.001) in the level of norepinephrine accompanied by a significant decrease (p < 0.01 and p < 0.001) in the tyrosine content in the brain on day 15 following exposure to 5, 50 and 100 microT magnetic fields. There was a significant increase (p < 0.001) in glutamine synthetase activity resulting in the significantly enhanced (p < 0.001) level of glutamine in the brain on day 15 (for 100 microT only). The possible mechanisms for these alterations are discussed. Further, magnetic fields had no effect on the levels of tryptophan and 5-hydroxytryptamine in the brain. Similarly, there was no effect on the activity of either aminotransferases or lactate dehydrogenase in the whole embryo or liver due to magnetic field exposure. CONCLUSIONS: Based on these studies we conclude that magnetic field-induced changes in norepinephrine levels might help explain alterations in the circadian rhythm, observed during magnetic field stress. Also, the enhanced level of glutamine can act as a contributing factor for developmental abnormalities.  相似文献   
7.
The 90-kDa heat shock protein (Hsp90) plays an important role in conformational regulation of cellular proteins and thereby cellular signaling and function. As Hsp90 is considered a key component of immune function and its inhibition has become an important target for cancer therapy, we here evaluated the role of Hsp90 in human dendritic cell (DC) phenotype and function. Hsp90 inhibition significantly decreased cell surface expression of costimulatory (CD40, CD80, CD86), maturation (CD83), and MHC (HLA-A, B, C and HLA-DP, DQ, DR) markers in immature DC and mature DC and was associated with down-regulation of both RNA and intracellular protein expression. Importantly, Hsp90 inhibition significantly inhibited DC function. It decreased Ag uptake, processing, and presentation by immature DC, leading to reduced T cell proliferation in response to tetanus toxoid as a recall Ag. It also decreased the ability of mature DC to present Ag to T cells and secrete IL-12 as well as induce IFN-gamma secretion by allogeneic T cells. These data therefore demonstrate that Hsp90-mediated protein folding is required for DC function and, conversely, Hsp90 inhibition disrupts the DC function of significant relevance in the setting of clinical trials evaluating novel Hsp90 inhibitor therapy in cancer.  相似文献   
8.
9.
10.

Background

Many musculoskeltal injuries in the workplace have been attributed to the repetitive loading of muscle and soft tissues. It is not disputed that muscular fatigue is a risk factor for musculoskeltal injury, however the disparity between gender with respect to muscular fatigability and rate of recovery is not well understood. Current health and safety guidelines do not account for sex differences in fatiguability and may be predisposing one gender to greater risk. The purpose of this study was to quantify the sex differences in fatigue development and recovery rate of lower and upper body musculature after repeated bouts of sustained isometric contractions.

Methods

Twenty-seven healthy males (n = 12) and females (n = 15) underwent bilateral localized fatigue of either the knee extensors (male: n = 8; female: n = 8), elbow flexors (male: n = 8; female: n = 10), or both muscle groups. The fatigue protocol consisted of ten 30-second sub-maximal isometric contractions. The changes in maximum voluntary contraction (MVC), electrically evoked twitches, and motor unit activation (MUA) were assessed along with the ability to control the sustained contractions (SLP) during the fatigue protocol using a mixed four-factor repeated measures ANOVA (gender × side × muscle × time) design with significance set at p < 0.05.

Results

There was a significant loss of MVC, MUA, and evoked twitch amplitude from pre- to post-fatigue in both the arms and legs. Males had greater relative loss of isometric force, a higher rate of fatigue development, and were less capable of maintaining the fatiguing contractions in the legs when compared to the females.

Conclusion

The nature of the induced fatigue was a combination of central and peripheral fatigue that did not fully recover over a 45-minute period. The results appear to reflect sex differences that are peripheral, and partially support the muscle mass hypothesis for explaining differences in muscular fatigue.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号