首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   23篇
  121篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   8篇
  2013年   13篇
  2012年   8篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   8篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1971年   3篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有121条查询结果,搜索用时 0 毫秒
1.
An osmotic remedial allele, gal 7-1, in the galactose pathway of Saccharomyces cerevisiae responds to either penetrating (ethylene glycol and diethylene glycol) or nonpenetrating (KCl, NaCl, and sorbitol) solutes in the growth medium. Extracts from cells grown under restrictive conditions gave no increase in enzyme activity (gal-1-phosphate, uridylyl transferase) when exposed to the penetrating solutes; thus protein synthesis or possibly polymer assembly is proposed as the critical step remedied by the addition of the solutes.  相似文献   
2.
Surface Structure of Bacillus stearothermophilus Ribosomes   总被引:2,自引:1,他引:1       下载免费PDF全文
No significant differences were noted in either the size or in the arrangement of the surface filaments of the ribosomes of Bacillus stearothermophilus and Escherichia coli.  相似文献   
3.
Summary Germinating spores of the sensitive fern,Onoclea sensibilis L., undergo premitotic nuclear migration before a highly asymmetric cell division partitions each spore into a large protonemal cell and a small rhizoid initial. Nuclear movement and subsequent rhizoid formation were inhibited by the microtubule (MT) inhibitors, colchicine, isopropyl-N-3-chlorophenyl carbamate (CIPC) and griseofulvin. Colchicine prevented polar nuclear movement and cell division so that spores developed into enlarged, uninucleate single cells. CIPC and griseofulvin prevented nuclear migration, but not cell division, so that spores divided into daughter cells of approximately equal size. In colchicine-treated spores, MT were not observed at any time during germination. CIPC prevented MT formation at a time coincident with nuclear movement in the control and caused a disorientation of the spindle MT. Both colchicine and CIPC appeared to act at a time prior to the onset of normal nuclear movement. The effects of colchicine were reversible but those of CIPC were not. Cytochalasin b had no effect upon nuclear movement or rhizoid differentiation. These results suggests that MT mediate nuclear movement and that a highly asymmetric cell division is essential for rhizoid differentiation.  相似文献   
4.
Electron microscopy revealed reproducible secondary structure patterns within partially denatured 16S and 23S ribosomal ribonucleic acid (rRNA) from Escherichia coli. When prepared with 50% formamide-100 mM ammonium acetate, 16S rRNA included two small hairpins that appeared in over 50% of all molecules. Three open loops were observed with frequencies of less than 25%. In contrast, 23S rRNA included a terminal open loop and two additional large structures in over 75% of all molecules. These secondary structure patterns were conserved in the 16S and 23S rRNA from Pseudomonas aeruginosa. The secondary structure of the 30S precursor rRNA from the ribonclease III-deficient E. coli mutant AB105 was mapped after partial denaturation in 70% formamide-100 mM ammonium acetate. Two large open loops were superimposed on the 16S and 23S rRNA secondary structure patterns. These loops were the most frequent structures found on the precursor, and their stems coincided with ribonuclease III cleavage sites. A tentative 5'-3 orientation was determined for the secondary structure patterns of 16S and 23S rRNA from their relative locations within 30S precursor rRNA. The relation of secondary structure to ribosomal protein binding and ribonuclease III cleavage is discussed.  相似文献   
5.
6.
7.
8.
DNA interstrand cross‐links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL (“approach”), a nucleotide is inserted across from the unhooked lesion (“insertion”), and the leading strand is extended beyond the lesion (“extension”). How DNA polymerases bypass the ICL is incompletely understood. Here, we use repair of a site‐specific ICL in Xenopus egg extracts to study the mechanism of lesion bypass. Deep sequencing of ICL repair products showed that the approach and extension steps are largely error‐free. However, a short mutagenic tract is introduced in the vicinity of the lesion, with a maximum mutation frequency of ~1%. Our data further suggest that approach is performed by a replicative polymerase, while extension involves a complex of Rev1 and DNA polymerase ζ. Rev1–pol ζ recruitment requires the Fanconi anemia core complex but not FancI–FancD2. Our results begin to illuminate how lesion bypass is integrated with chromosomal DNA replication to limit ICL repair‐associated mutagenesis.  相似文献   
9.
KJ Wynne  GW Swain  RB Fox  S Bullock  J Uilk 《Biofouling》2013,29(2-4):277-288

Two silicone coatings have been evaluated for barnacle adhesion. One coating is an unfilled hydrosilation cured polydimethylsiloxane (PDMS) network, while the other is a room temperature vulcanized (RTV), filled, ethoxysiloxane cured PDMS elastomer, RTV11?. The adhesion strength of one species of barnacle, Balanus eburneus, to the hydrosilation coatings is in the range of 0.37–0.60 kg cm‐2 while the corresponding range for RTV11 is 0.64–0.90 kg cm‐2. The easier release of B. eburneus from the hydrosilation cured network compared to RTV11 is discussed in relationship to differences in bulk and surface properties. Preliminary results suggest bulk modulus may be the most important parameter in determining barnacle adhesion strength. In light or mechanical property analysis, a re‐evaluation of surface properties and chemical stability is presented.  相似文献   
10.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号