首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   12篇
  2023年   4篇
  2022年   4篇
  2021年   13篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   10篇
  2011年   10篇
  2010年   6篇
  2009年   7篇
  2008年   9篇
  2007年   12篇
  2006年   3篇
  2005年   14篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2000年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有150条查询结果,搜索用时 31 毫秒
1.
The toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-(2'-ethylphenyl)-1,2,3,6-tetrahydropyridine (2'Et-MPTP), and their corresponding pyridinium species was studied in the rat pheochromocytoma PC12 cell line. MPTP and its analogues are known to be metabolized by monoamine oxidase (MAO) to dihydropyridinium intermediates which are further transformed, either enzymatically or spontaneously, into pyridinium species. MAO activity in PC12 cells is almost exclusively of the A form, and 2'Et-MPTP is a good substrate for both MAO-A and MAO-B. In contrast, MPTP is a poor substrate for MAO-A, but a good substrate for MAO-B. 2'Et-MPTP caused considerably more cell death than MPTP in the PC12 cells. However, 1-methyl-4-(2'-ethylphenyl)pyridinium and 1-methyl-4-phenylpyridinium, the corresponding pyridinium species formed from 2'Et-MPTP and MPTP, respectively, were equipotent as toxins. The toxic effects of the tetrahydropyridines and their corresponding pyridiniums were both concentration- and time-dependent. Measurements of the levels of the pyridinium species formed and the remaining tetrahydropyridine in the media indicated that 2'Et-MPTP was converted about five to seven times more readily into its toxic pyridinium species than was MPTP. There was, moreover, an excellent correlation between amount of pyridinium formed and cell death. There was also a parallel between the capacity of clorgyline and pargyline, irreversible MAO inhibitors, to decrease the formation of the pyridinium species and their capacity to protect against the toxic actions of the tetrahydropyridines. These data are consistent with the concept that the MAO-A-dependent formation of the pyridinium species from the tetrahydropyridine is a prerequisite for toxicity in PC12 cells.  相似文献   
2.
Production of peaches (Prunus persica (L.) Batsch) for both local market and export is increasing each year in Egypt. Brown rot disease, caused by Monilinia laxa and Monilinia fructigena, is considered one of the most important postharvest rots affecting peaches in Egypt and economic losses are increasing. Antifungal activity of glycyrrhizic acid nanoparticles (GA-NPs) and glycyrrhizic acid (GA) at 0.2 and 0.4 mmol/L was investigated as a control for both these brown rot pathogens on peach fruits in both in vitro and in vivo studies. In the in vitro studies, GA-NPs were the most effective as shown by the ability to decrease linear growth of both brown rot pathogens in potato dextrose agar (PDA) amended with 0.4 mmol/L GA-NPs. Micrographs of M. fructigena exposed to 0.4 mmol/LGA showed mycelial deformations, nodule formation, detachment of the cell wall, shrinkage and inhomogeneous cytoplasmic materials with large vacuoles. Mycelium of M. laxa exposed to 0.4 mmol/ LGA-NPs resulted in thinner and distorted hyphae, nodule formation, cell wall thinning, and swellings. The GANPs and GA treatments improved fruit quality by maintaining firmness and total soluble solids (TSS). GA-NPs were more effective in decreasing decay incidence than their bulk material. The 0.4 mmol/L GA-NPs completely inhibited the disease on naturally infected peach fruits for both seasons of 2018 and 2019. Furthermore, 0.4 mmol/L GA-NPs reduced the disease incidence in inoculated fruits by 95 (M. laxa) and 88% (M. fructigena) in 2018 season and 96 (M. laxa) and 85% (M. fructigena) in 2019 season. In conclusion, GA-NPs could enhance the resistance of peaches against brown rot caused by M. laxa and M. fructigena.  相似文献   
3.
Blood serum is arguably the most analyzed biofluid for disease prediction and diagnosis. Herein, we benchmarked five different serum abundant protein depletion (SAPD) kits with regard to the identification of disease-specific biomarkers in human serum using bottom-up proteomics. As expected, the IgG removal efficiency among the SAPD kits is highly variable, ranging from 70% to 93%. A pairwise comparison of database search results showed a 10%–19% variation in protein identification among the kits. Immunocapturing-based SAPD kits against IgG and albumin outperformed the others in the removal of these two abundant proteins. Conversely, non-antibody-based methods (i.e., kits using ion exchange resins) and kits leveraging a multi-antibody approach were proven to be less efficient in depleting IgG/albumin from samples but led to the highest number of identified peptides. Notably, our results indicate that different cancer biomarkers could be enriched up to 10% depending on the utilized SAPD kit compared with the undepleted sample. Additionally, functional analysis of the bottom-up proteomic results revealed that different SAPD kits enrich distinct disease- and pathway-specific protein sets. Overall, our study emphasizes that a careful selection of the appropriate commercial SAPD kit is crucial for the analysis of disease biomarkers in serum by shotgun proteomics.  相似文献   
4.
l-DOPA Cytotoxicity to PC12 Cells in Culture Is via Its Autoxidation   总被引:16,自引:1,他引:15  
Abstract: The mechanism of cytotoxicity of l -DOPA was studied in the rat pheochromocytoma PC12 cell line. The cytotoxicity of l -DOPA to PC12 cells was time and concentration dependent. Carbidopa, which inhibited the conversion of l -DOPA to dopamine, did not protect against l -DOPA cytotoxicity in PC12 cells. Furthermore, clorgyline, a selective inhibitor of monoamine oxidase type A, and pargyline, an inhibitor of both monoamine oxidase types A and B, both did not have an effect on l -DOPA toxicity. These findings suggest that cytotoxicity was not due to dopamine formed from l -DOPA. Catalase or superoxide dismutase each partially protected against l -DOPA toxicity in PC12 cells. In combination, the effects were synergistic and provided almost total protection against cytotoxicity. 6-Cyano-7-nitroquinoxaline-2,3-dione, an antagonist of non-NMDA receptors, did not protect against l -DOPA toxicity. These data suggest that toxicity of l -DOPA is most likely due to the action of free radicals formed as a result of its autoxidation. Furthermore, these findings suggest that patients on long-term l -DOPA therapy are potentially at risk from the toxic intermediates formed as a result of its autoxidation.  相似文献   
5.
In the present study, photosynthetic parameters including gas exchanges, pigment contents, and chlorophyll fluorescence, were compared in two contrasting local Medicago truncatula lines TN6.18 and TN8.20, in response to salt added to the nutrient solution. Plants were cultivated under symbiotic nitrogen fixation (SNF) after inoculation with a reference strain Sinorhizobium meliloti 2011, a very tolerant strain to salinity (700 mM NaCl), and grown in a controlled glasshouse. On one month old plants (with active SNF), salt treatment (75 mM NaCl) was gradually applied. Photosynthesis, assimilating pigments and chlorophyll fluorescence were monitored throughout the experiment during both short and long terms, compared to control (non-saline) conditions. A genotypic variation in salt tolerance was found; TN6.18 was the more sensitive to salinity. The relative tolerance of TN8.20 was concomitant with the highest photochemical quenching coefficient (qP) affecting the maximum quantum yield of PSII (Y); the real quantum yield (?exc) was the most affected in the sensitive line. Moreover, stomatal and PSII reaction centers activities differed clearly between the studied lines. We found that the effect of salinity on photosynthesis of M. truncatula was related to PSII activity reduction rather than to stomatal conductance limitation. Photosynthesis was reduced by the inhibition of CO2 assimilation caused by PSII damage. This was clearly estimated by the Y, ?exc and especially by the quantum yield of electron transport of PSII (ΦPSII). Thus, on the basis of our results on the two local M. truncatula lines, we recommend the use of chlorophyll fluorescence as non-destructive screening method to discriminate susceptible and resistant legumes to salt stress.  相似文献   
6.
For the past several decades it has been proposed that birds show latitudinal variation in song complexity. How universal this variation may be and what factors generate it, however, are still largely unknown. Furthermore, while migration is confounded with latitude, migratory behaviour alone may also be associated with variation in song complexity. In this paper we review the literature to assess current ideas on how latitude and migratory behaviour may drive large‐scale geographical patterns of song complexity. At least seven distinct hypotheses have been proposed in 29 studies of the topic. Four of these hypotheses posit that sexual selection pressures co‐vary with latitude and/or migration, resulting in concordant changes in song. Other hypotheses suggest that mechanisms other than sexual selection, such as large‐scale changes in environmental sound transmission properties, may be at play. Sixteen studies found support for increased song complexity with increased latitude and/or migration, whereas 13 did not. Relatively few studies exist on this topic, and methodological differences between them and variable definitions of ‘complexity’ make it difficult to determine whether results are comparable and concordant. At a minimum, it is possible to conclude there is no strong evidence that song complexity increases with latitude and/or migration in all birds. Future work should focus on examining multiple hypotheses at once to further advance our understanding of how latitude, migration and song complexity may or may not be related.  相似文献   
7.
Static winching tests were carried out in order to determine the mechanical resistance of Maritime pine to overturning. The tested stands were selected according to podzolic soil conditions: wet Lande, characterised by a shallow ground water table and a hard pan horizon, and dry Lande, with a deeper ground water table and a hard pan absent or broken up. As this soil horizon limits the vertical growth of tree roots, anchorage resistance was investigated with regards to the presence or absence of a hard pan underneath each tree. To determine if mechanical behaviour differed within a stand, trees from inside the stand and edge trees at the border exposed to prevailing winds were also tested. The critical turning moment (TMcrit,total) at the base of the stem was positively related to the variable (H × DBH2) (H, total tree height; DBH, tree diameter). Linear regression analyses between TMcrit,total and (H × DBH2) showed that the presence of a hard pan had no significant effect on anchorage resistance in uprooted trees. Stem failure occurred for 82% of trees on dry Lande when (H × DBH2) < 1 m3. Moreover, stem failure type on dry Lande indicated that trees were better anchored. On soil with a hard pan, edge trees were found to be 20% more resistant to overturning than inner trees. Edge trees differed from inner trees in that the soil-root plate was two times larger and also possessed a larger surface area on the windward side.  相似文献   
8.
Within-plant heterogeneity in growth, morphology, and chemistry is ubiquitous, and is commonly attributed to differences in tissue age, light availability, or previous damage by herbivores. Although these factors are important, we argue that plant vascular architecture is an underappreciated determinant of heterogeneity. Vascular architecture can restrict the transport of resources (nutrients, photosynthate, hormones, etc.) to within specific sectors of the plant: this is referred to as sectoriality. Although studies have documented sectoriality in the transport of isotopes and dyes from roots to shoots, the ecological consequences of this sectoriality remain poorly understood. We tested the hypothesis that spatial variation in belowground nutrient availability combined with sectorial transport results in localized "fertilization" of aboveground plant parts and generates heterogeneity in traits important to herbivores. Our split-root experiments with tomato (Lycopersicon esculentum Mill) clearly demonstrate that fertilization to isolated lateral roots generates heterogeneity in leaf morphology, phenolic chemistry, and side-shoot growth. Specifically, leaflets with direct connections to these lateral roots were larger and had lower levels of rutin and chlorogenic acid than did leaflets in other sectors lacking direct vascular connections. Moreover, side-shoot production was greater in the connected sectors. We discuss the implications of this heterogeneity for plant-herbivore interactions.  相似文献   
9.
Spiroplasma kunkelii, the causative agent of corn stunt disease in maize ( Zea mays L.), is a helical, cell wall-less prokaryote assigned to the class Mollicutes. As part of a project to sequence the entire S. kunkelii genome, we analyzed an 85-kb DNA segment from the pathogenic strain CR2-3x. This genome segment contains 101 ORFs and two tRNA genes. The majority of the ORFs code for predicted proteins that can be assigned to respective clusters of orthologous groups (COGs). These COGs cover diverse functional categories including genetic information storage and processing, cellular processes, and metabolism. The most notable gene cluster in this genome segment is a super-operon capable of encoding 24 ribosomal proteins. The organization of genes in this operon reflects the unique evolutionary position of the spiroplasma. Gene duplications, domain rearrangements, and frameshift mutations in the segment are interpreted as indicators of phase variation in the spiroplasma. To our knowledge, this is the first analysis of a large genome segment from a plant pathogenic spiroplasma.Communicated by W. Goebel  相似文献   
10.
Human mesenchymal stromal cells (hMSCs) represent an attractive cell source for clinic applications. Besides being multi‐potent, recent clinical trials suggest that they secrete both trophic and immunomodulatory factors, allowing allogenic MSCs to be used in a wider variety of clinical situations. The yield of prospective isolation is however very low, making expansion a required step toward clinical applications. Unfortunately, this leads to a significant decrease in their stemness. To identify the mechanism behind loss of multi‐potency, hMSCs were expanded until replicative senescence and the concomitant molecular changes were characterized at regular intervals. We observed that, with time of culture, loss of multi‐potency was associated with both the accumulation of DNA damage and the respective activation of the DNA damage response pathway, suggesting a correlation between both phenomena. Indeed, exposing hMSCs to DNA damage agents led to a significant decrease in the differentiation potential. We also showed that hMSCs are susceptible to accumulate DNA damage upon in vitro expansion, and that although hMSCs maintained an effective nucleotide excision repair activity, there was a progressive accumulation of DNA damage. We propose a model in which DNA damage accumulation contributes to the loss of differentiation potential of hMSCs, which might not only compromise their potential for clinical applications but also contribute to the characteristics of tissue ageing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号