首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   64篇
  国内免费   5篇
  482篇
  2022年   3篇
  2021年   9篇
  2020年   3篇
  2019年   8篇
  2018年   10篇
  2017年   4篇
  2016年   6篇
  2015年   11篇
  2014年   12篇
  2013年   8篇
  2012年   23篇
  2011年   20篇
  2010年   16篇
  2009年   9篇
  2008年   17篇
  2007年   16篇
  2006年   20篇
  2005年   20篇
  2004年   14篇
  2003年   20篇
  2002年   18篇
  2001年   15篇
  2000年   19篇
  1999年   11篇
  1998年   3篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1992年   9篇
  1991年   11篇
  1990年   6篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   9篇
  1978年   7篇
  1977年   9篇
  1976年   9篇
  1975年   4篇
  1974年   4篇
  1972年   6篇
  1971年   6篇
  1970年   3篇
排序方式: 共有482条查询结果,搜索用时 0 毫秒
1.
2.
Evidence for a phytochrome-mediated phototropism in etiolated pea seedlings   总被引:6,自引:3,他引:3  
Entirely etiolated pea seedlings (Pisum sativum, L. cv Alaska) were tested for a phototropic response to short pulses of unilateral blue light. They responded with small curvatures resembling in fluence-dependence and kinetics of development a phytochrome-mediated phototropic response previously described in maize mesocotyls. Irradiations from above with saturating red or far-red light, either immediately before or after the unilateral phototropic stimulus, strongly reduced or eliminated subsequent positive phototropic curvature. Only blue light from above, however, entirely eliminated curvature at all fluences of stimulus. It is concluded that the phototropism is primarily a result of phytochrome action.  相似文献   
3.
Abstract Lesquerella stonensis (Brassicaceae) is an obligate winter annual endemic to a small portion of Rutherford County in the Central Basin of Tennessee, where it grows in disturbed habitats. This species forms a persistent seed bank, and seeds remain viable in the soil for at least 6 years. Seeds are dormant at maturity in May and are dispersed as soon as they ripen. Some of the seeds produced in the current year, as well as some of those in the persistent seed bank, afterripen during late spring and summer; others do not afterripen and thus remain dormant. Seeds require actual or simulated spring/summer temperatures to come out of dormancy. Germination occurs in September and October. Fully afterripened seeds germinate over a wide range of thermoperiods (15/6–35/20°C) and to a much higher percentage in light (14 h photoperiod) than in darkness. The optimum daily thermoperiod for germination was 30/15°C. Nondormant seeds that do not germinate in autumn are induced back into dormancy (secondary dormancy) by low temperatures (e.g., 5°C) during winter, and those that are dormant do not afterripen; thus seeds cannot germinate in spring. These seed dormancy/ germination characteristics of L. stonensis do not differ from those reported for some geographically widespread, weedy species of winter annuals and thus do not help account for the narrow endemism of this species.  相似文献   
4.
Cell and Tissue Research - The infracerebral complex consists of: (a) two types of ependymoid infracerebral cells located on the ventral surface of the brain, adjacent to a coelomic sinus and blood...  相似文献   
5.
Summary The orientation of cortical microtubules in plant cells has been extensively studied, in part because of their influence on the expansion of most plant cell types. Cortical microtubules are often arranged in helical arrays, which are well known to occur with a specific pitch as a function of development or experimental treatment; however, it is not known if the handedness of helical arrays can also be specified. We have studied the handedness of helical arrays by using Vibratome sectioning of maize primary roots and confocal microscopy of Arabidopsis primary roots. In cortical cells of maize roots, the helical array was found to have the same handedness at a given position, not only for the cells of a single root, but also for the cells of more than one hundred roots examined. Quantification of angular distribution of apparent individual microtubules showed that defined regions of the root were composed of cells with highly uniform microtubule orientation. In the region between transverse and longitudinal microtubules (5–10.5 mm from the tip), the array formed a right-handed helix, and basal of cells with longitudinal microtubules (11.5–15 mm from the tip), the array formed a left-handed helix. Similarly, in epidermal cells of Arabidopsis roots right-handed helical arrays were found in the region between transverse and longitudinal microtubules. These results suggest that, in addition to the orientation of microtubules, the handedness of helical microtubule arrays is under cellular control.Abbreviations Cy3 indocarbocyanine - PBS phosphate-buffered saline - PIPES piperazine-N,N-bis-[2-ethanesulfonic acid]  相似文献   
6.
3-Mercaptopyruvate sulfurtransferase (E.C. 2.8.1.2; MST) is an enzyme believed to function in the endogenous cyanide (CN) detoxification system because it is capable of transferring sulfur from 3-mercaptopyruvate (3-MP) to CN, forming the less toxic thiocyanate (SCN). To date, 3-MP is the only known sulfur-donor substrate for MST. In an effort to increase the understanding of what chemical properties of 3-MP affect its utilization as a substrate, in vitro enzyme kinetic studies of MST were conducted using two mercaptic acids that are structurally related to 3-MP. Neither of these compounds was able to serve as a sulfur-donor substrate for MST. Inhibitor studies determined that 3-mercaptopropionic acid did not affect the Km of MST for 3-MP but did decrease Vmax and, thus, was determined to be a noncompetitive inhibitor. Alternatively, 2-mercaptopropionic acid 2-MPA decreased Km and Vmax and was determined to be an uncompetitive inhibitor of MST with respect to 3-MP. These data indicate that the α-keto group of 3-MP is necessary for its utilization as a substrate, and the inhibitor studies suggest that the position of the sulfur may also affect the binding of these compounds to the enzyme. These observations increase the understanding of what factors can affect the utilization of a compound as a sulfur-donor substrate for MST and may aid in the development of alternative sulfur-donor substrates for MST. © 1996 John Wiley & Sons, Inc.  相似文献   
7.
Abstract: Abstract-We have previously described a 5-fluorodeox yuridine (FUdR) resistant neuroblastoma variant, possessing normal levels of ATP: thymidine-5-phosphotransferase (EC 2.7.1.21) [trivial name: thymidine kinase (TK)] but an 8-fold elevation in methy1enetetrahydrofolate:dUrd-5′P C-methyltransferase (EC 2.l.l.b) [trivial name: thymidylate synthetase (TS)] relative to the drug-sensitive parental clone. This variant possesses elevated levels of the parental TS species, 30% of which is uninhibitable by in vivo pulses of FUdR, suggesting the subcellular compartmentalization of this enzyme. We contrast this variant with a second FUdR resistant clone isolated from an ethyl-methane-sulfonate mutagenized population of the parental clone. This variant displays a 96% reduction in TK specific activity, despite normal FUdR and thymidine uptake rates, demonstrating the independence of thymidine phosphorylation and uptake. Grown without drug, its resistance declines (half-life of 15 cell divisions) with its TK specific activity rising to a plateau of 16% of the parental level after 56 cell divisions. Thymidine (1.0μM) protects the TK+ but not the TK- variants from FUdR induced growth inhibition but is without effect on TS specific activity. Unlike Tetrahymena (DICKENS et al., 1975), neuroblastoma TS activities appear not to be regulated by adenosine or guanosine cyclic nucleotide levels.  相似文献   
8.
Microtubules are important in plant growth and development. Localizing microtubules in sectioned material is advantageous because it allows any tissue of interest to be studied and it permits the positional relations of the cells within the organ to be known. We describe here a method that uses semi-thin (0.5–2 m) sections of material embedded in butyl-methylmethacrylate, to which 10 mM dithiothreitol was added. After removing the embedding material and using indirect immunofluorescence staining, we obtain clear images of microtubules, actin microfilaments, callose and pulse-fed bromodeoxyuridine. This method works on the root tissues of Arabidopsis thaliana(L.) Heynh, Pinus radiataD. Don, Zamia furfuraceaAit., Azolla pinnataR. Br. and on sporophytic tissues of Funaria hygrometricaHedw. In general, most of the cells in the organs studied are successfully stained. Using this method, we find that interphase meristematic cells in all of these species have microtubules not only in the usual cortical array but also throughout their cytoplasm. The presence of the calcium chelator ethylene glycol-bis(-aminoethyl ether)N,N,N,N-tetraacetic acid EGTA in fixation buffers led to some tissue damage, and did not enhance the preservation of microtubules. The common assumption that EGTA-containing buffers stabilize plant microtubules during fixation appears unwarranted.Abbreviations BrdU 5-bromodeoxyuridine - DTT dithiothreitol - EGTA ethylene glycol-bis(-aminoethyl ether) - N,N,N,N tetraacetic acid We thank Ann Cork for technical assistance, Professor B.E.S. Gunning (Australian National University) and Drs. A.R. Hardham (A.N.U.) and R.E. Williamson (A.N.U.) for intellectual and material support, Dr D. McCurdy (A.N.U.) for the purified anti-actin antibody, and Professor B. Stone (La Trobe University, Melbourne, Australia) for generously providing the anti-callose antibody. We also thank the Electron Microscopy Unit of A.N.U. for the use of facilities. L.C.F. gratefully acknowledges financial support from the National Sciences and Engineering Research Council of Canada.  相似文献   
9.
1. Acetylcholine reduced atrial contractions by 82.5% in guinea pig, 50.8% in rat, and 41.5% in rabbit. 2. The EC50 values for the negative inotropic effect of acetylcholine were 3.3 x 10(-7) M in rat and guinea pig atria and 4.1 x 10(-6) M in rabbit atria. 3. There was no correlation between the species differences in the negative inotropic effect of acetylcholine in atria and the density or affinity of acetylcholinesterase or muscarinic receptors. 4. Inhibition of atrial acetylcholinesterase with soman reduced the EC50 of acetylcholine three-fold in all species, but did not change the maximal inotropic effect of acetylcholine. 5. Species differences in the negative inotropic effect of acetylcholine may be caused by differences in the coupling between myocardial muscarinic receptors and the ion channels that mediate negative inotropy.  相似文献   
10.
Light diffraction patterns produced by single skeletal muscle fibers and small fiber bundles of Rana pipiens semitendinosus have been examined at rest and during tetanic contraction. The muscle diffraction patterns were recorded with a vidicon camera interfaced to a minicomputer. Digitized video output was analyzed on-line to determine mean sarcomere length, line intensity, and the distribution of sarcomere lengths. The occurrence of first-order line intensity and peak amplitude maxima at approximately 3.0 mum is interpreted in terms of simple scattering theory. Measurements made along the length of a singel fiber reveal small variations in calculated mean sarcomere length (SD about 1.2%) and its percent dispersion (2.1% +/- 0.8%). Dispersion in small multifiber preparations increases approximately linearly with fiber number (about 0.2% per fiber) to a maximum of 8-10% in large bundles. Dispersion measurements based upon diffraction line analysis are comparable to SDs calculated from length distribution histograms obtained by light micrography of the fiber. First-order line intensity decreases by about 40% during tetanus; larger multifibered bundles exhibit substantial increases in sarcomere dispersion during contraction, but single fibers show no appreciable dispersion change. These results suggest the occurrence of asynchronous static or dynamic axial disordering of thick filaments, with a persistence in long range order of sarcomere spacing during contraction in single fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号