首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   13篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   13篇
  2014年   9篇
  2013年   18篇
  2012年   18篇
  2011年   13篇
  2010年   8篇
  2009年   7篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1981年   3篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
  1971年   4篇
  1970年   1篇
  1966年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
1.
The kinetics of the uptake of Fe(II)-histidinate, a known promoter of lipid peroxidation, into Ehrlich ascites tumor (EAT) cells and the intracellular binding of iron were studied in vitro. EAT cells (27.10(6)/ml) were incubated in Hanks' balanced salts solution at 37 degrees C for various time intervals in the presence of FeSO4 (1 mM) and L-histidine (10 mM). Total iron was determined by the 1,10-phenanthroline/ascorbate method and ferric iron by reaction with 5-sulfosalicylic acid; the difference was ascribed to ferrous iron. Total iron decreased rapidly in the medium (242 nmol within the first 10 min), and a corresponding increase of total iron (saturation value 376 nmol after 60 min) was determined within the cells, after the cellular proteins had been solubilized with 6 M urea. In the absence of EAT cells, Fe(II)-histidinate was readily oxidized to Fe(III)-histidinate by oxygen, but this reaction was strongly retarded by the tumor cells. The uptake of iron histidinate occurred in the oxidized state, while an uptake of ferrous iron could not be proven unambiguously. When EAT cells were saturated with iron, it was found that 93% of intracellular iron was bound to water-insoluble proteins and 7% was associated with soluble proteins, while no unbound iron was detectable by the method used. It was concluded that, despite the high uptake of total iron, only a very small portion of the intracellular iron was available as a redox catalyst for lipid peroxidation.  相似文献   
2.
Neutron-induced γ-ray emission tomography for quantitative determination of the concentration and distribution of elements in a selected plane through a biological specimen is briefly explained and applied by way of illustration to the analysis of gallstones. A system capable of carrying out studies of the binding site of75Se in different matrices using time differential perturbed angular correlation spectroscopy is also briefly described. Developments in the detector technology of positron emission tomography have allowed small-diameter imaging devices to be built for in vivo preclinical evaluation of new tracers in small animals and are discussed in the context of a proposed experiment combining the techniques mentioned above.  相似文献   
3.
NADPH-dependent 20α-hydroxysteroid oxidoreductase (20α-HSD; EC 1.1.1.149) from bovine fetal erythrocytes was obtained for the first time free of hemoglobin by a new 2,500-fold purification scheme. This was achieved by a sequence of calcium phosphate gel adsorption, ammonium sulfate fractionation, and affinity chromatography. The present results lead us to believe that the NADPH-dependent 3β-hydroxysteroid oxidoreductase activity, which was co-purified with 20α-activity, may originate at the active site of 20α-HSD (2).  相似文献   
4.
A series of aroyl- and aryl-hydrazide derivatives was prepared from d-glycero-d-gulo-heptono-1,4-lactone (1). The reactivity of the NH proton in these hydrazides, in terms of their dissociation constants (pKa), was determined from their electronic spectra, and correlated to the Hammett σ values of the substituents. Comparable reactivities of the NH protons for the compounds, and the effect of the substituent, were studied by n.m.r. spectroscopy. Decomposition of the aroylhydrazides with copper(II) sulfate or nitrous acid resulted in the regeneration of 1.  相似文献   
5.
Impaired angiogenesis in scleroderma (SSc) is a critical component of SSc pathology. MicroRNA-126 (miR-126) is expressed in endothelial cells (MVECs) where it regulates VEGF responses by repressing the negative regulators of VEGF, including the sprouty-related protein-1 (SPRED1), and phosphoinositide-3 kinase regulatory subunit 2 (PIK3R2). MVECs were isolated from SSc skin and matched subjects (n = 6). MiR-126 expression was measured by qPCR and in situ hybridization. Matrigel-based tube assembly was used to test angiogenesis. MiR-126 expression was inhibited by hsa-miR-126 inhibitor and enhanced by hsa-miR-126 Mimic. Epigenetic regulation of miR-126 expression was examined by the addition of epigenetic inhibitors (Aza and TSA) to MVECs and by bisulphite genomic sequencing of DNA methylation of the miR-126 promoter region. MiR-126 expression, as well as EGFL7 (miR-126 host gene), in SSc-MVECs and skin, was significantly down-regulated in association with increased expression of SPRED1 and PIK3R2 and diminished response to VEGF. Inhibition of miR-126 in NL-MVECs resulted in reduced angiogenic capacity, whereas overexpression of miR-126 in SSc-MVECs resulted in enhanced tube assembly. Addition of Aza and TSA normalized miR-126 and EGFL7 expression levels in SSc-MVECs. Heavy methylation in miR-126/EGFL7 gene was noted. In conclusion, these results demonstrate that the down-regulation of miR-126 results in impaired VEGF responses.  相似文献   
6.
Due to their inexpensive and eco-friendly nature, and existence of manganese in various oxidation states and their natural abundance have attained significant attention for the formation of Mn3O4 nanoparticles (Mn3O4 NPs). Herein, we report the preparation of Mn3O4 nanoparticles using manganese nitrate as a precursor material by utilization of a precipitation technique. The as-prepared Mn3O4 nanoparticles (Mn3O4 NPs) were characterized by using X-ray powder diffraction (XRD), UV–Visible spectroscopy (UV–Vis), High-Resolution Transmission electron microscopy (HRTEM), Field emission scanning electron microscopy (FESEM), Thermal gravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). The antimicrobial properties of the as-synthesized Mn3O4 nanoparticles were investigated against numerous bacterial and fungal strains including S. aureus, E. coli, B. subtilis, P. aeruginosa, A. flavus and C. albicans. The Mn3O4 NPs inhibited the growth of S. aureus with a minimum inhibitory concentration (MIC) of 40 μg/ml and C. albicans with a MIC of 15 μg/ml. Furthermore, the Mn3O4 NPs anti-cancer activity was examined using MTT essay against A549 lung and MCF-7 breast cancer cell lines. The Mn3O4 NPs revealed significant activity against the examined cancer cell lines A549 and MCF-7. The IC50 values of Mn3O4 NPs with A549 cell line was found at concentration of 98 µg/mL and MCF-7 cell line was found at concentration of 25 µg/mL.  相似文献   
7.

Background

Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins.

Results

Applying our freely available SRSim software to a large data set on kinetochore proteins in human cells, we construct a spatial rule-based simulation model of the human inner kinetochore. The model generates an estimation of the probability distribution of the inner kinetochore 3D architecture and we show how to analyze this distribution using information theory. In our model, the formation of a bridge between CenpA and an H3 containing nucleosome only occurs efficiently for higher protein concentration realized during S-phase but may be not in G1. Above a certain nucleosome distance the protein bridge barely formed pointing towards the importance of chromatin structure for kinetochore complex formation. We define a metric for the distance between structures that allow us to identify structural clusters. Using this modeling technique, we explore different hypothetical chromatin layouts.

Conclusions

Applying a rule-based network analysis to the spatial kinetochore complex geometry allowed us to integrate experimental data on kinetochore proteins, suggesting a 3D model of the human inner kinetochore architecture that is governed by a combinatorial algebraic reaction network. This reaction network can serve as bridge between multiple scales of modeling. Our approach can be applied to other systems beyond kinetochores.  相似文献   
8.
9.
The aim of this work is to design pH-dependent swellable and erodable-buffered matrices and to study the effect of the microenvironment pH on the release pattern of diclofenac sodium. Buffered matrix tablets containing diclofenac sodium, physically mixed with hydrophilic polymer (hydroxypropyl methylcellulose [HPMC]) and pH-dependent solubility polymer (Eudragit L100-55) were prepared with different microenvironment pHs. The release of diclofenac sodium from the buffer matrices was studied in phosphate buffer solutions of pH 5.9 and 7.4. The swelling and erosion matrices containing only HPMC and Eudragit L100-55 were studied in phosphate buffer solution of pH similar to the microenvironment pHs of the matrices. Drug release from matrices was found to be linear as a function of time. Amount of drug released was found to be higher in the medium of pH 7.4 than that of pH 5.9. The rate of drug release increased with the increase of the microenvironment pH of the matrices as determined from the slope. The pattern of drug release did not change with the change of microenvironment pH. The swelling and erosion occurred simultaneously from matrices made up of HPMC and Eudragit L100-55. Both extent of swelling and erosion increased with increase of the medium pH. It was concluded from this study that changing the pH within the matrix influenced the rate of release of the drug without affecting the release pattern. Fax: Not Forwarded  相似文献   
10.
Z- and E-Phosphonate analogues 12 and 13 derived from cyclopropavir and the corresponding cyclic phosphonates 14 and 15 were synthesized and their antiviral activity was investigated. The 2,2-bis(hydroxymethylmethylenecyclopropane acetate (17) was transformed to tetrahydropyranyl acetate 18. Deacetylation gave intermediate 19 which was converted to bromide 20. Alkylation with diisopropyl methylphosphonate afforded after protecting group exchange (21 to 22) acetylated phosphonate intermediate 22. Addition of bromine gave the dibromo derivative 16 which was used in the alkylation–elimination procedure with 2-amino-6-chloropurine to give Z- and E-isomers 23 and 24. Hydrolytic dechlorination coupled with removal of all protecting groups gave the guanine phosphonates 12 and 13. Cyclization afforded the cyclic phosphonates 14 and 15. Z-Phosphonate 12 was a potent and non-cytotoxic inhibitor of human and murine cytomegalovirus (HCMV and MCMV) with EC50 2.2–2.7 and 0.13 μM, respectively. It was also an effective agent against Epstein-Barr virus (EBV, EC50 3.1 μM). The cyclic phosphonate 14 inhibited HCMV (EC50 2.4–11.5 μM) and MCMV (EC50 0.4 μM) but it was ineffective against EBV. Both phosphonates 12 and 14 were as active against two HCMV Towne strains with mutations in UL97 as they were against wild-type HCMV thereby circumventing resistance due to such mutations. Z-Phosphonate 12 was a moderate inhibitor of replication of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) but it was a potent agent against varicella zoster virus (VZV, EC50 2.9 μM). The cyclic phosphonate 14 lacked significant potency against these viruses. E-isomers 13 and 15 were devoid of antiviral activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号