首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   23篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   9篇
  2016年   11篇
  2015年   11篇
  2014年   16篇
  2013年   18篇
  2012年   19篇
  2011年   9篇
  2010年   10篇
  2009年   8篇
  2008年   11篇
  2007年   11篇
  2006年   9篇
  2005年   3篇
  2004年   8篇
  2003年   9篇
  2002年   9篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
1.
The mitochondrial oxidative phosphorylation system consists of five multimeric enzymes (complexes I-V). NADH dehydrogenase or complex I (CI) is affected in most of the mitochondrial diseases and in some neurodegenerative disorders. We have studied the physiological consequences of a partial CI inhibition at the cellular level. We used a genetic model (40% CI-inhibited human-ape xenomitochondrial cybrids) and a drug-induced model (0-100% CI-inhibited cells using different concentrations of rotenone). We observed a quantitative correlation between the level of CI impairment and cell respiration, cell growth, free radical production, lipid peroxidation, mitochondrial membrane potential, and apoptosis. We showed that cell death was quantitatively associated with free radical production rather than with a decrease in respiratory chain function. The results obtained with human xenomitochondrial cybrid cells were compatible with those observed in rotenone-induced 40% CI-inhibited cells. At high concentrations (5-6-fold higher than the concentration necessary for 100% CI inhibition), rotenone showed a second toxic effect at the level of microtubule assembly, which also led to apoptosis. The correlation found among all the parameters studied helped clarify the physiological consequences of partial CI inhibitions at the cellular level.  相似文献   
2.
L Barrientos  J J Scott    P P Murthy 《Plant physiology》1994,106(4):1489-1495
Phytases are the primary enzymes responsible for the hydrolysis of phytic acid, myo-inositol-1,2,3,4,5,6-hexakisphosphate (I-1,2,3,4,5,6-P6). A number of phytases with varying specificities, properties, and localizations hydrolyze phytic acid present in cells. The specificity of hydrolysis of phytic acid by alkaline phytase from lily (Lilium longiflorum L.) pollen is described. Structures of the intermediate inositol phosphates and the final product were established by a variety of nuclear magnetic resonance techniques (1H-, 31P-, and 31P-1H-detected multiple quantum coherence spectroscopy, and total correlation spectroscopy). On the basis of the structures identified we have proposed a scheme of hydrolysis of phytic acid. Initial hydrolysis of the phosphate ester occurs at the D-5 position of phytic acid to yield the symmetrical I-1,2,3,4,6-P5. The two subsequent dephosphorylations occur adjacent to the D-5 hydroxyl group to yield I-1,2,3-P3 as the final product. Alkaline phytase differs from other phytases in the specificity of hydrolysis of phosphate esters on the inositol ring, its high substrate specificity for phytic acid, and biochemical properties such as susceptibility to activation by calcium and inhibition by fluoride. The physiological significance of alkaline phytase and the biological role of I-1,2,3-P3 remain to be identified.  相似文献   
3.
Two regions of the genome, a 1-kbp portion of the zeste locus and a 1.1- kbp portion of the yolk protein 2 locus, were sequenced in six individuals from each of four species: Drosophila melanogaster, D. simulans, D. mauritiana, and D. sechellia. The species and strains were the same as those of a previous study of a 1.9-kbp region of the period locus. No evidence was found for recent balancing or directional selection or for the accumulation of selected differences between species. Yolk protein 2 has a high level of amino acid replacement variation and a low level of synonymous variation, while zeste has the opposite pattern. This contrast is consistent with information on gene function and patterns of codon bias. Polymorphism levels are consistent with a ranking of effective population sizes, from low to high, in the following order: D. sechellia, D. melanogaster, D.mauritiana, and D. simulans. The apparent species relationships are very similar to those suggested by the period locus study. In particular, D. simulans appears to be a large population that is still segregating variation that arose before the separation of D. mauritiana and D. sechellia. It is estimated that the separation of ancestral D. melanogaster from the other species occurred 2.5-3.4 Mya. The separations of D. sechellia and D. mauritiana from ancestral D. simulans appear to have occurred 0.58- 0.86 Mya, with D. mauritiana having diverged from ancestral D. simulans 0.1 Myr more recently than D. sechellia.   相似文献   
4.
5.
6.
7.
8.
9.
ABSTRACT

We studied the oxidation reactions of thiocyanate and L-cysteine on iron phthalocyanine (FePc) coupled via a bridging ligand of the 4-mercatopyridine (4MP) type to a gold cluster (Au26), aiming to simulate a modified gold electrode. Theoretical models have been used based on the framework of density functional theory. Several mechanistic pathways are explored for the study of these reactions, finding that the most favorable mechanism involves an electron transfer process as the rate-determining step. Along the process, the ability of the gold cluster to act as an electron acceptor facilitating the reactions was detected. In addition, the proposed models presented a correlation between the energy obtained for the rate-determining step of the reaction and the experimental oxidation potentials of the thiocyanate and L-cysteine.  相似文献   
10.
Cytochrome c oxidase (COX) or complex IV of the mitochondrial respiratory chain plays a fundamental role in energy production of aerobic cells. In humans, COX deficiency is the most frequent cause of mitochondrial encephalomyopathies. Human COX is composed of 13 subunits of dual genetic origin, whose assembly requires an increasing number of nuclear-encoded accessory proteins known as assembly factors. Here, we have identified and characterized human CCDC56, an 11.7-kDa mitochondrial transmembrane protein, as a new factor essential for COX biogenesis. CCDC56 shares sequence similarity with the yeast COX assembly factor Coa3 and was termed hCOA3. hCOA3-silenced cells display a severe COX functional alteration owing to a decreased stability of newly synthesized COX1 and an impairment in the holoenzyme assembly process. We show that hCOA3 physically interacts with both the mitochondrial translation machinery and COX structural subunits. We conclude that hCOA3 stabilizes COX1 co-translationally and promotes its assembly with COX partner subunits. Finally, our results identify hCOA3 as a new candidate when screening for genes responsible for mitochondrial diseases associated with COX deficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号