首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   7篇
  80篇
  2020年   2篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   5篇
  2013年   6篇
  2012年   7篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
Highlights
  • •Sufficient tumor tissues are often unavailable large HLA peptidome discovery.
  • •Using patient derived xenograft (PDX) tumors can overcome this limitation.
  • •The large PDX HLA peptidomes expand significantly those of the original biopsies.
  • •The HLA peptidomes of the PDX tumors included many tumor antigens.
  相似文献   
2.
Abstract— The amount of α-melanocyte-stimulating hormone (α-MSH) in the entire hypothalamus as well as the amount of α-MSH in free granule and synaptosome fractions of hypothalamic homogenates was investigated throughout the lifespan of female rats (1-24 months). A 900 g supernatant fluid was prepared from hypothalami following homogenization in an iso-osmotic sucrose solution, and free granules and synaptosomes containing α-MSH were fractionated by means of continuous sucrose density gradient centrifugation. α-MSH was quantified by radioimmunoassay. The total amount of α-MSH in the hypothalamus, as well as the amount in free granules and synaptosomes prepared from hypothalami increased progressively from the 1st to the 5th month of life, and this increase was more pronounced in the free granules than in the synaptosomes. On the other hand, the amount of α-MSH in the hypothalamus and the amount present in free granules and synaptosomes prepared from 5-24-month-old animals decreased with age, and this decrease appeared to proceed at similar rates in both subcellular compartments. Based on these results, it is suggested that ageing of α-MSH neurons in the hypothalamus is accompanied by a degeneration of the axons and/or an alteration in the biosynthetic and degradative activities of the neuron.  相似文献   
3.
Homogenates of male rat hypothalami were fractionated by means of differential centrifugation, and α-melanocyte-stimulating hormone (α-MSH) in the various fractions was quantified by radioimmunoassay. Of the total quantity of α-MSH in the homogenate, 36% was recovered in the 11,500 g pellet and 31% sedimented between 11,500 and 105,000 g. α-MSH was not detected in the 105,000 g supernatant fluid. When the 900 g supernatant fluid was fractionated on continuous sucrose density gradients at non-equilibrium conditions, two populations of particles containing α-MSH were observed. When fractionated at equilibrium conditions, the two populations were recovered in a single band. These sedimentation characteristics indicate that the particles that contain α-MSH differ in size but are similar in density. After hypo-osmotic shock, the large particles containing α-MSH were not demonstrable, whereas the small particles appeared to be resistant to such treatment. In their sedimentation, the particles containing α-MSH were indistinguishable from particles containing thyrotropin releasing hormone (TRH) but were separable from those that contained luteinizing hormone releasing hormone (LHRH). It is suggested that the large particles containing α-MSH are synaptosomes.  相似文献   
4.
Abstract— The 900 g supernatant fluid prepared from male rat hypothalamic homogenates was fractionated by means of continuous sucrose density gradient centrifugation. Thyrotropin releasing hormone and luteinizing hormone releasing hormone in the gradient fractions were quantified by radioimmunoassays. TRH was associated with two populations of particles separable by means of nonequilibrium density centrifugation (100,000 g for 30min). However, after'equilibrium'centrifugation (100,000 × g for 180 min), a single peak of TRH was observed at 1.07 M-sucrose. Hypo-osmotic shock as well as treatment with 0.1% Triton X-100 or 0.1% deoxycholate (DOC) released TRH from both sets of particles. LRH, as TRH, was associated with two populations of particles which were separable by means of nonequilibrium density gradient centrifugation. After'equilibrium'centrifugation, both sets of LRH-containing particles banded at 1.27M-sucrose as a single symmetrical peak. Although 0.1% Triton X-100 released LRH from both populations of particles, hypo-osmotic shock or 0.1% DOC released LRH only from the large LRH-containing particles. The small LRH-containing particles were resistant to hypo-osmotic shock and to 0.1% DOC. Based on these criteria, it is concluded that in hypothalamic homogenates the TRH-containing particles and the large LRH-containing particles are synaptosomes. The small LRH-containing particles may be of different cellular and/or subcellular origin.  相似文献   
5.
Metformin is a commonly-used treatment for type 2 diabetes, whose mechanism of action has been linked, in part, to activation of AMP-activated protein kinase (AMPK). However, little is known regarding its effect on circadian rhythms. Our aim was to evaluate the effect of metformin administration on metabolism, locomotor activity and circadian rhythms. We tested the effect of metformin treatment in the liver and muscle of young lean, healthy mice, as obesity and diabetes disrupt circadian rhythms. Metformin led to increased leptin and decreased glucagon levels. The effect of metformin on liver and muscle metabolism was similar leading to AMPK activation either by liver kinase B1 (LKB1) and/or other kinases in the muscle. AMPK activation resulted in the inhibition of acetyl CoA carboxylase (ACC), the rate limiting enzyme in fatty acid synthesis. Metformin also led to the activation of liver casein kinase I α (CKIα) and muscle CKIε, known modulators of the positive loop of the circadian clock. This effect was mainly of phase advances in the liver and phase delays in the muscle in clock and metabolic genes and/or protein expression. In conclusion, our results demonstrate the differential effects of metformin in the liver and muscle and the critical role the circadian clock has in orchestrating metabolic processes.  相似文献   
6.
The Major histocompatibility complex (MHC) class I peptidome is thought to be generated mostly through proteasomal degradation of cellular proteins, a notion that is based on the alterations in presentation of selected peptides following proteasome inhibition. We evaluated the effects of proteasome inhibitors, epoxomicin and bortezomib, on human cultured cancer cells. Because the inhibitors did not reduce the level of presentation of the cell surface human leukocyte antigen (HLA) molecules, we followed their effects on the rates of synthesis of both HLA peptidome and proteome of the cells, using dynamic stable isotope labeling in tissue culture (dynamic-SILAC). The inhibitors reduced the rates of synthesis of most cellular proteins and HLA peptides, yet the synthesis rates of some of the proteins and HLA peptides was not decreased by the inhibitors and of some even increased. Therefore, we concluded that the inhibitors affected the production of the HLA peptidome in a complex manner, including modulation of the synthesis rates of the source proteins of the HLA peptides, in addition to their effect on their degradation. The collected data may suggest that the current reliance on proteasome inhibition may overestimate the centrality of the proteasome in the generation of the MHC peptidome. It is therefore suggested that the relative contribution of the proteasomal and nonproteasomal pathways to the production of the MHC peptidome should be revaluated in accordance with the inhibitors effects on the synthesis rates of the source proteins of the MHC peptides.The repertoires and levels of peptides, presented by the major histocompatibility complex (MHC)1 class I molecules at the cells'' surface, are modulated by multiple factors. These include the rates of synthesis and degradation of their source proteins, the transport efficacy of the peptides through the transporter associated with antigen processing (TAP) into the endoplasmic reticulum (ER), their subsequent processing and loading onto the MHC molecules within the ER, and the rates of transport of the MHC molecules with their peptide cargo to the cell surface. The off-rates of the presented peptides, the residence time of the MHC complexes at the cell surface, and their retrograde transport back into the cytoplasm, influence, as well, the presented peptidomes (reviewed in (1)). Even though significant portions of the MHC class I peptidomes are thought to be derived from newly synthesized proteins, including misfolded proteins, defective ribosome products (DRiPs), and short lived proteins (SLiPs), most of the MHC peptidome is assumed to originate from long-lived proteins, which completed their functional cellular roles or became defective (retirees), (reviewed in (2)).The main protease, supplying the MHC peptidome production pipeline, is thought to be the proteasome (3). It is also responsible for generation of the final carboxyl termini of the MHC peptides (4), (reviewed in (5)). The final trimming of the n-termini of the peptides, within the endoplasmic reticulum (ER), is thought to be performed by amino peptidases, such as ERAP1/ERAAP, which fit the peptides into their binding groove on the MHC molecules (6) (reviewed in (7)). Nonproteasomal proteolytic pathways were also suggested as possible contributors to the MHC peptidome, including proteolysis by the ER resident Signal peptide peptidase (8, 9), the cytoplasmic proteases Insulin degrading enzyme (10), Tripeptidyl peptidase (1113), and a number of proteases within the endolysosome pathway (reviewed recently in (1417)). In contrast to the mostly cytoplasmic and ER production of the MHC class I peptidome, the class II peptidome is produced in a special compartment, associated with the endolysosome pathway (1820). This pathway is also thought to participate in the cross presentation of class I peptides, derived from proteins up-taken by professional antigen presenting cells (21), (reviewed in (1517, 22)).The centrality of the proteasomes in the generation of the MHC peptidome was deduced mostly from the observed change in presentation levels of small numbers of selected peptides, following proteasome inhibition (3, 23). Even the location of some of the genes encoding the catalytic subunits of the immunoproteasome (LMP2 and LMP7) (24) within the MHC class II genomic locus, was suggested to support the involvement of the proteasome in the generation of the MHC class I peptidome (25). Similar conclusions were deduced from alterations in peptide presentation, following expression of the catalytic subunits of the immunoproteasome (26), (reviewed in (5)). Yet, although most of the reports indicated reductions in presentation of selected peptides by proteasome inhibition (3, 2729), others have observed only limited, and sometimes even opposite effects (23, 3032).The matter is further complicated by the indirect effects of proteasome inhibition used for such studies on the arrest of protein synthesis by the cells (3335), on the transport rates of the MHC molecules to the cell surface, and on their retrograde transport back to the vesicular system (36) (reviewed in (37)). Proteasome inhibition likely causes shortage of free ubiquitin, reduced supply of free amino acids, and induces an ER unfolded protein response (UPR), which signals the cells to block most (but not all) cellular protein synthesis (reviewed in (38)). Because a significant portion of the MHC peptidome originates from degradation of DRiPs and SLiPs (reviewed in (2)), arrest of new protein synthesis should influence the presentation of their derived MHC peptides. Taken together, these arguments may suggest that merely following the changes in the presentation levels of the MHC molecules, or even of specific MHC peptides, after proteasome inhibition, does not provide the full picture for deducing the relative contribution of the proteasomal pathway to the production of the MHC peptidome (reviewed in (7)).MHC peptidome analysis can be performed relatively easily by modern capillary chromatography combined with mass spectrometry (reviewed in (39)). The peptides are recovered from immunoaffinity purified MHC molecules after detergent solubilization of the cells (40, 41), from soluble MHC molecules secreted to the cells'' growth medium (42, 43) or from patients'' plasma (44). The purified peptides pools are resolved by capillary chromatography and the individual peptides are identified and quantified by tandem mass spectrometry (40), (reviewed in (4547)). In cultured cells, quantitative analysis can also be followed by metabolic incorporation of stable isotope labeled amino acids (SILAC) (48). Furthermore, the rates of de novo synthesis of both MHC peptides and their proteins of origin can be followed using the dynamic-SILAC proteomics approach (49) with its further adaptation to HLA peptidomics (5052).This study attempts to define the relative contribution of the proteasomes to the production of HLA class I peptidome by simultaneously following the effects of proteasome inhibitors, epoxomicin and bortezomib (Velcade), on the rates of de novo synthesis of both the HLA class I peptidome and the cellular proteome of the same MCF-7 human breast cancer cultured cells. The proteasome inhibitors did not reduce the levels of HLA presentations, yet affected the rates of production of both the HLA peptidome and cellular proteome, mostly decreasing, but also increasing some of the synthesis rates of the HLA peptides and cellular proteins. Thus, we suggest that the degree of contribution of the proteasomal pathway to the production of the HLA-I peptidome should be re-evaluated in accordance with their effects on the entire HLA class-I peptidome, while taking into consideration the inhibitors'' effects on the synthesis (and degradation) rates of the source proteins of each of the studied HLA peptides.  相似文献   
7.
8.
A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF''s ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.Perinatal brain injury in the context of premature birth is a major cause of neonatal morbidity and mortality.1 Depending on the degree of prematurity, 15–20% of the affected newborns die during the postnatal period and ~25% of survivors suffer significant long-term disability including cerebral palsy, epilepsy and increased hyperactivity.2 Therapeutic approaches to counteract the disastrous cascades of neonatal brain injury have been proposed. Unfortunately, in premature infants at risk, no neuroprotective agent has proven safe and effective so far.3Secreted from developing embryos, PreImplantation Factor (PIF) can be detected in the maternal circulation during pregnancy,4, 5 and its presence has been correlated with live birth.5, 6, 7 PIF has been implicated in promoting embryo implantation through modulating maternal immune tolerance.5, 8, 9 Consistent with the immune function, a synthetic PIF analog (sPIF) of 15 amino acids (MVRIKPGSANKPSDD) that was subcutaneously administrated was able to both reverse and prevent paralysis through inhibiting neuroinflammation in a murine model of experimental autoimmune encephalomyelitis.10 The neuroprotective property of sPIF was further underscored by its ability to mitigate neuronal loss and microglial activation in a rat model of perinatal brain injury.11 The neuroprotective effects were attributed, at least in part, to sPIF''s ability to downregulate microRNA let-7 in the injured brain. Abundantly expressed in the central nervous system (CNS), let-7 released from dying cells during brain injury induces neuronal death, exacerbating CNS damage.12, 13 sPIF inhibited the biogenesis of let-7 in both neuronal and immune cells through Toll-like Receptor 4 (TLR4).11 As PIF imparts multitargeted effects,10 it is almost certain that inhibiting let-7 is not the only mechanism of PIF action.In search of additional mechanisms, we chose to focus on cyclic AMP-dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC). PKA/PKC signaling is downstream of TLR4,14, 15 and TLR4 was required for sPIF-induced neuroprotective effects.11 PKA/PKC are important signaling molecules in a variety of cellular functions, including cell growth and differentiation, neuronal plasticity and cellular response to hypoxia–ischemia.16, 17, 18, 19 Mechanistically, PKA/PKC activation leads to phosphorylation of serine and threonine residues on target proteins, thereby modulating protein stability, protein–protein interactions and catalytic activity.20 In the case of brain injury, activation of the PKA/PKC signaling pathways imparts neuroprotection by increasing expression of anti-apoptotic and neurotrophic molecules while reducing pro-apoptotic molecules in neurons.21, 22, 23 Not surprisingly, PKA/PKC pathways have been recognized as potent targets for neuroprotective strategies.In the current study, we have examined and revealed a novel mechanism of PIF action. sPIF confers neuroprotection in a rat model of perinatal brain injury by modulating PKA/PKC signaling, which is recapitulated in vitro using neuronal cells. Overall, our data support clinical translation of sPIF treatment for hypoxic–ischemic brain injuries.  相似文献   
9.
10.
Barnea E  Sorkin R  Ziv T  Beer I  Admon A 《Proteomics》2005,5(13):3367-3375
Prefractionations of proteins prior to their proteolysis, chromatography, and MS/MS analyses help reduce complexity and increase the yield of protein identifications. A number of methods were evaluated here for prefractionating serum samples distributed to the participating laboratories as part of the human Plasma Proteome Project. These methods include strong cation exchange (SCX) chromatography, slicing of SDS-PAGE gel bands, and liquid-phase IEF of the proteins. The fractionated proteins were trypsinized and the resulting peptides were resolved and analyzed by multidimensional protein identification technology coupled to IT MS/MS. The MS/MS spectra were clustered, combined, and searched against the IPI protein databank using Pep-Miner. The identification results were evaluated for the efficacy of the different prefractionation methodologies to identify larger numbers of proteins at higher confidence and to achieve the best coverage of the proteins with the identified peptides. Prefractionation based on SCX resulted in the largest number of identified proteins, followed by gel slices and then the liquid-phase IEF. An important observation was that each of the methods revealed a set of unique proteins, some identified with high confidence. Therefore, for comprehensive identification of the serum proteins, several different prefractionation approaches should be used in parallel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号