首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  2019年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
International Journal of Peptide Research and Therapeutics - Escherichia coli is one of the simplest hosts which is widely being used to express heterologous proteins. However, without appropriate...  相似文献   
2.
The sparse inflorescence1 (spi1), Barren inflorescence1 (Bif1), barren inflorescence2 (bif2), and barren stalk1 (ba1) mutants produce fewer branches and spikelets in the inflorescence due to defects in auxin biosynthesis, transport, or response. We report that spi1, bif1, and ba1, but not bif2, also function in promoting cell elongation in the inflorescence.  相似文献   
3.
Auxin plays a fundamental role in organogenesis in plants. Multiple pathways for auxin biosynthesis have been proposed, but none of the predicted pathways are completely understood. Here, we report the positional cloning and characterization of the vanishing tassel2 (vt2) gene of maize (Zea mays). Phylogenetic analyses indicate that vt2 is a co-ortholog of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1), which converts Trp to indole-3-pyruvic acid in one of four hypothesized Trp-dependent auxin biosynthesis pathways. Unlike single mutations in TAA1, which cause subtle morphological phenotypes in Arabidopsis thaliana, vt2 mutants have dramatic effects on vegetative and reproductive development. vt2 mutants share many similarities with sparse inflorescence1 (spi1) mutants in maize. spi1 is proposed to encode an enzyme in the tryptamine pathway for Trp-dependent auxin biosynthesis, although this biochemical activity has recently been questioned. Surprisingly, spi1 vt2 double mutants had only a slightly more severe phenotype than vt2 single mutants. Furthermore, both spi1 and vt2 single mutants exhibited a reduction in free auxin levels, but the spi1 vt2 double mutants did not have a further reduction compared with vt2 single mutants. Therefore, both spi1 and vt2 function in auxin biosynthesis in maize, possibly in the same pathway rather than independently as previously proposed.  相似文献   
4.
The Drosophila jing gene encodes a zinc finger protein required for the differentiation and survival of embryonic CNS midline and tracheal cells. We show that there is a functional relationship between jing and the Egfr pathway in the developing CNS midline and trachea. jing function is required for Egfr pathway gene expression and MAPK activity in both the CNS midline and trachea. jing over-expression effects phenocopy those of the Egfr pathway and require Egfr pathway function. Activation of the Egfr pathway in loss-of-function jing mutants partially rescues midline cell loss. Egfr pathway genes and jing show dominant genetic interactions in the trachea and CNS midline. Together, these results show that jing regulates signal transduction in developing midline and tracheal cells.  相似文献   
5.
Hormonal control of grass inflorescence development   总被引:2,自引:0,他引:2  
Grass inflorescences produce the grain that feeds the world. Compared to eudicots such as Arabidopsis (Arabidopsis thaliana), grasses have a complex inflorescence morphology that can be explained by differences in the activity of axillary meristems. Advances in genomics, such as the completion of the rice (Oryza sativa) and sorghum (Sorghum bicolor) genomes and the recent release of a draft sequence of the maize (Zea mays) genome, have greatly facilitated research in grasses. Here, we review recent progress in the understanding of the genetic regulation of grass inflorescence development, with a focus on maize and rice. An exciting theme is the key role of plant growth hormones in inflorescence development.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号