首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  16篇
  2023年   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2011年   4篇
  2008年   3篇
  2007年   1篇
  1974年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.

Background

The variable efficacy (0–80%) of Mycobacterium bovis Bacille Calmette Guréin (BCG) vaccine against adult tuberculosis (TB) necessitates development of alternative vaccine candidates. Development of recombinant BCG (rBCG) over-expressing promising immunodominant antigens of M. tuberculosis represents one of the potential approaches for the development of vaccines against TB.

Methods/Principal Findings

A recombinant strain of BCG - rBCG85C, over expressing the antigen 85C, a secretory immuno-dominant protein of M. tuberculosis, was evaluated for its protective efficacy in guinea pigs against M. tuberculosis challenge by aerosol route. Immunization with rBCG85C resulted in a substantial reduction in the lung (1.87 log10, p<0.01) and spleen (2.36 log10, p<0.001) bacillary load with a commensurate reduction in pathological damage, when compared to the animals immunized with the parent BCG strain at 10 weeks post-infection. rBCG85C continued to provide superior protection over BCG even when post-challenge period was prolonged to 16 weeks. The cytokine profile of pulmonary granulomas revealed that the superior protection imparted by rBCG85C was associated with the reduced levels of pro-inflammatory cytokines - interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, moderate levels of anti-inflammatory cytokine - transforming growth factor (TGF)-β along with up-regulation of inducible nitric oxide synthase (iNOS). In addition, the rBCG85C vaccine induced modulation of the cytokine levels was found to be associated with reduced fibrosis and antigen load accompanied by the restoration of normal lung architecture.

Conclusions/Significance

These results clearly indicate the superiority of rBCG85C over BCG as a promising prophylactic vaccine against TB. The enduring protection observed in this study gives enough reason to postulate that if an open-ended study is carried out with low dose of infection, rBCG85C vaccine in all likelihood would show enhanced survival of guinea pigs.  相似文献   
2.

Background

Efficient control of tuberculosis (TB) requires development of strategies that can enhance efficacy of the existing vaccine Mycobacterium bovis Bacille Calmette Guerin (BCG). To date only a few studies have explored the potential of latency-associated antigens to augment the immunogenicity of BCG.

Methods/Principal Findings

We evaluated the protective efficacy of a heterologous prime boost approach based on recombinant BCG and DNA vaccines targeting α-crystallin, a prominent latency antigen. We show that “rBCG prime - DNA boost” strategy (R/D) confers a markedly superior protection along with reduced pathology in comparison to BCG vaccination in guinea pigs (565 fold and 45 fold reduced CFU in lungs and spleen, respectively, in comparison to BCG vaccination). In addition, R/D regimen also confers enhanced protection in mice. Our results in guinea pig model show a distinct association of enhanced protection with an increased level of interleukin (IL)12 and a simultaneous increase in immuno-regulatory cytokines such as transforming growth factor (TGF)β and IL10 in lungs. The T cell effector functions, which could not be measured in guinea pigs due to technical limitations, were characterized in mice by multi-parameter flow cytometry. We show that R/D regimen elicits a heightened multi-functional CD4 Th1 cell response leading to enhanced protection.

Conclusions/Significance

These results clearly indicate the superiority of α-crystallin based R/D regimen over BCG. Our observations from guinea pig studies indicate a crucial role of IL12, IL10 and TGFβ in vaccine-induced protection. Further, characterization of T cell responses in mice demonstrates that protection against TB is predictable by the frequency of CD4 T cells simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and IL2. We anticipate that this study will not only contribute toward the development of a superior alternative to BCG, but will also stimulate designing of TB vaccines based on latency antigens.  相似文献   
3.

Background

In spite of a consistent protection against tuberculosis (TB) in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG) fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB.

Methods/Principal Findings

In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin- a key latency antigen of M. tuberculosis to boost the BCG induced immunity. ‘BCG prime – DNA boost’ regimen (B/D) confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log10 and 1.96 log10 fewer bacilli in lungs and spleen, respectively; p<0.01). In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3+) simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and interleukin (IL)2.

Conclusions/Significance

These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.  相似文献   
4.
Glutamyl-queuosine tRNAAsp synthetase (Glu-Q-RS) from Escherichia coli is a paralog of the catalytic core of glutamyl-tRNA synthetase (GluRS) that catalyzes glutamylation of queuosine in the wobble position of tRNAAsp. Despite important structural similarities, Glu-Q-RS and GluRS diverge strongly by their functional properties. The only feature common to both enzymes consists in the activation of Glu to form Glu-AMP, the intermediate of transfer RNA (tRNA) aminoacylation. However, both enzymes differ by the mechanism of selection of the cognate amino acid and by the mechanism of its activation. Whereas GluRS selects l-Glu and activates it only in the presence of the cognate tRNAGlu, Glu-Q-RS forms Glu-AMP in the absence of tRNA. Moreover, while GluRS transfers the activated Glu to the 3′ accepting end of the cognate tRNAGlu, Glu-Q-RS transfers the activated Glu to Q34 located in the anticodon loop of the noncognate tRNAAsp. In order to gain insight into the structural elements leading to distinct mechanisms of amino acid activation, we solved the three-dimensional structure of Glu-Q-RS complexed to Glu and compared it to the structure of the GluRS·Glu complex. Comparison of the catalytic site of Glu-Q-RS with that of GluRS, combined with binding experiments of amino acids, shows that a restricted number of residues determine distinct catalytic properties of amino acid recognition and activation by the two enzymes. Furthermore, to explore the structural basis of the distinct aminoacylation properties of the two enzymes and to understand why Glu-Q-RS glutamylates only tRNAAsp among the tRNAs possessing queuosine in position 34, we performed a tRNA mutational analysis to search for the elements of tRNAAsp that determine recognition by Glu-Q-RS. The analyses made on tRNAAsp and tRNAAsn show that the presence of a C in position 38 is crucial for glutamylation of Q34. The results are discussed in the context of the evolution and adaptation of the tRNA glutamylation system.  相似文献   
5.
Molecular epidemiology studies have used the counts of different mutational types like transitions, transversions, etc. to identify putative mutagens, with little reference to gene organization and structure–function of the translated product. Moreover, geographical variation in the mutational spectrum is not limited to the mutational types at the nucleotide level but also have a bearing at the functional level. Here, we developed a novel measure to estimate the rate of spontaneous detrimental mutations called “mutation index” for comparing the mutational spectra consisting of all single base, missense, and non-missense changes. We have analyzed 1609 mutations occurring in 38 exons in 24 populations in three diseases viz. hemophilia B (F9 gene – 420 mutations in 9 populations across 8 exons), hemophilia A (F8 gene – 650, 8 and 26, respectively) and ovarian carcinoma (TP53 gene – 539, 7 and 4, respectively). We considered exons as units of evolution instead of the entire gene and observed feeble differences among populations implying lack of a mutagen-specific effect and the possibility of mutation causing endogenous factors. In all the three genes we observed elevated rates of detrimental mutations in exons encoding regions of significance for the molecular function of the protein. We propose that this can be extended to the entire exome with implications in exon-shuffling and complex human diseases.  相似文献   
6.
Glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS) is a paralog of glutamyl-tRNA synthetase (GluRS) and is found in more than forty species of proteobacteria, cyanobacteria, and actinobacteria. Glu-Q-RS shows striking structural similarity with N-terminal catalytic domain of GluRS (NGluRS) but it lacks the C-terminal anticodon binding domain (CGluRS). In spite of structural similarities, Glu-Q-RS and NGluRS differ in their functional properties. Glu-Q-RS glutamylates the Q34 nucleotide of the anticodon of tRNAAsp whereas NGluRS constitutes the catalytic domain of GluRS catalyzing the transfer of Glu on the acceptor end of tRNAGlu. Since NGluRS is able to catalyze aminoacylation of only tRNAGlu the glutamylation capacity of tRNAAsp by Glu-Q-RS is surprising. To understand the substrate specificity of Glu-Q-RS we undertook a systemic approach by investigating the biophysical and biochemical properties of the NGluRS (1–301), CGluRS (314–471) and Glu-Q-RS-CGluRS, (1–298 of Glu-Q-RS fused to 314–471 from GluRS). Circular dichroism, fluorescence spectroscopy and differential scanning calorimetry analyses revealed absence of N-terminal domain (1–298 of Glu-Q-RS) and C-terminal domain (314–471 from GluRS) communication in chimera, in contrast to the native full length GluRS. The chimeric Glu-Q-RS is still able to aminoacylate tRNAAsp but has also the capacity to bind tRNAGlu. However the chimeric protein is unable to aminoacylate tRNAGlu probably as a consequence of the lack of domain–domain communication.  相似文献   
7.
Membrane-less organelles are cellular structures which arise through the phenomenon of phase separation. This process enables compartmentalization of specific sets of macromolecules (e.g., proteins, nucleic acids), thereby regulating cellular processes by increasing local concentration, and modulating the structure and dynamics of their constituents. Understanding the connection between structure, material properties and function of membrane-less organelles requires inter-disciplinary approaches, which address length and timescales that span several orders of magnitude (e.g., Ångstroms to micrometer, picoseconds to hours). In this review, we discuss the wide variety of methods that have been applied to characterize the morphology, rheology, structure and dynamics of membrane-less organelles and their components, in vitro and in live cells.  相似文献   
8.
9.
Ribosomes of Bacteroidia (formerly Bacteroidetes) fail to recognize Shine-Dalgarno (SD) sequences even though they harbor the anti-SD (ASD) of 16S rRNA. Inhibition of SD-ASD pairing is due to sequestration of the 3’ tail of 16S rRNA in a pocket formed by bS21, bS18, and bS6 on the 30S platform. Interestingly, in many Flavobacteriales, the gene encoding bS21, rpsU, contains an extended SD sequence. In this work, we present genetic and biochemical evidence that bS21 synthesis in Flavobacterium johnsoniae is autoregulated via a subpopulation of ribosomes that specifically lack bS21. Mutation or depletion of bS21 in the cell increases translation of reporters with strong SD sequences, such as rpsU’-gfp, but has no effect on other reporters. Purified ribosomes lacking bS21 (or its C-terminal region) exhibit higher rates of initiation on rpsU mRNA and lower rates of initiation on other (SD-less) mRNAs than control ribosomes. The mechanism of autoregulation depends on extensive pairing between mRNA and 16S rRNA, and exceptionally strong SD sequences, with predicted pairing free energies of < –13 kcal/mol, are characteristic of rpsU across the Bacteroidota. This work uncovers a clear example of specialized ribosomes in bacteria.  相似文献   
10.
A water-soluble polysaccharide, isolated from the hot aqueous extract of an edible mushroom, Agaricus bitorquis, was found to consist of d-glucose only. On the basis of total hydrolysis, methylation analysis, and NMR studies (1H, 13C, TOCSY, DQF-COSY, NOESY, ROESY, HMQC, and HMBC), the structure of the repeating unit was established as→6)-β-d-Glcp-(1→  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号