首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   55篇
  国内免费   9篇
  2020年   8篇
  2015年   12篇
  2014年   13篇
  2013年   14篇
  2012年   17篇
  2011年   22篇
  2010年   16篇
  2009年   21篇
  2008年   27篇
  2007年   20篇
  2006年   17篇
  2005年   8篇
  2004年   21篇
  2003年   10篇
  2002年   13篇
  2001年   10篇
  2000年   14篇
  1999年   14篇
  1998年   13篇
  1997年   8篇
  1996年   11篇
  1994年   8篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   7篇
  1986年   17篇
  1985年   9篇
  1984年   9篇
  1983年   13篇
  1980年   7篇
  1979年   10篇
  1978年   9篇
  1976年   11篇
  1974年   10篇
  1973年   9篇
  1972年   10篇
  1967年   7篇
  1959年   11篇
  1958年   24篇
  1957年   26篇
  1956年   26篇
  1955年   22篇
  1954年   25篇
  1953年   16篇
  1952年   13篇
  1951年   11篇
  1950年   9篇
排序方式: 共有763条查询结果,搜索用时 218 毫秒
1.
2.
3.
4.
The secretory organelles of Plasmodium knowlesi were studied ultrastructurally to examine their mode of action during invasion. The formation of lamellar structures in merozoite rhoptries within late stage schizonts is prevented by the protease inhibitors chymostatin and leupeptin. Under normal conditions vesicles lined by 6-nm membranes are formed in rhoptries during erythrocyte invasion. Stereoscopic viewing of tilted sections shows that where the merozoite apex contacts the parasitophorous vacuole (PV) membrane during invasion, a domed elevation of the PV surface lies within the mouth of the rhoptry duct in contact with the secretory matrix. The membrane of the early invasion pit is thinner (6 nm) than the red cell membrane elsewhere, and sheets of lamellar material are frequently present on the invasion pit surface. These findings support the proposal that the rhoptry-microneme complex is capable of generating membranous material and inserting it into the red cell surface in a controlled manner to create the parasitophorous vacuole. On the basis of this model, measurements from serial sections show that the rhoptries could provide enough material to create a membrane lining the parasitophorous vacuole, and, with the contribution of the microspheres, could double it to accommodate the early ring stage of the parasite.  相似文献   
5.
6.
7.
Cytosolic functions obtained from various bovine tissues was individually subjected to column isoelectric focusing in order to resolve the glutathione S-transferase isoenzymes. The results showed a large variability in the isoenzyme pattern. All the tissues were found to have neutral-acidic forms of the enzyme, whilst liver, adrenal gland, testicle, lung and kydney contained a conspicuous amount of activity associated with the cationic forms of the enzyme. In spite of these differences, by comparison of the conjugating activity of transferases, we did not find essential inter-organ variations. Conversely, when the same tissue samples were tested for selenium independent glutathione peroxidase activity, using cumene hydroperoxide as second substrate, we observed a higher activity in the organs having the cationic form of glutathione S-transferase.  相似文献   
8.
9.
A high molecular weight glycoconjugate has been isolated from neurite-producing neuronal tumor cells in culture and has been designated as I(0) based on its elution characteristics in gel filtration chromatography. This molecule cannot be found in a variety of nonneuronal cells. I(0) is found in the substratum-attached material or cell fraction of neurite-producing neuroblastoma cells, depending upon culture conditions. It is found in the substratum-bound fraction of B104 rat neuroblastoma cells during serum starvation and in the EGTA-detached cell fraction of B104 cells grown in chemically defined N2 medium. It occurs only in the cell fraction of the human neuroblastoma line Platt. Examination of behavioral variants of the B104 rat line further strengthens the association of I(0) with neurite production; the constitutive neurite-producing E(R)B9 variant contains I(0) while the non-neurite-producing E(R)A11 variant does not. I(0) is large, eluting in the void volume of sepharose-CL2B columns. Radioiodination of intact cells with lactoperoxidase shows I(0) to be a cell surface component. Metabolic radiolabeling studies show that it contains a high proportion of polysaccharide to protein, does not contain mannose, and is unsulfated. Alkaline borohydride reduction release two size classes of large polysaccharide chain. The alkaline reduction results, along with the mannose incorporation studies, show the presence of O-glycosidic linkages and few, if any, N-linkages. Resistance to nitrous acid deamination, insensitivity to glycosaminoglycan lyases, and the absence of sulfation, indicate that I(0) does not contain the glycosaminoglycans hyaluronic acid, chondroitin-, dermatan-, or heparin- sulfates. Affinity column chromatography reveals high binding affinity of I(0) to polyornithine and no binding to gelatin (collagen) or the glycosaminoglycans hyaluronate and heparin. These studies describe a unique high molecular weight glycoconjugate on the surface of neurite-producing neuroblastoma cell lines from two species.  相似文献   
10.
1. Oat chloroplasts, in the presence of 0.02 M methylamine, reduce 2,6 dichlorophenolindophenol (DCIP) at a rate of 350–500 μmoles/mg chl per h, in saturating light. Brief sonication for approx. 1 min lowers the rate to approx. 50 μmoles/mg chl per h; longer sonication does not reduce activity further. During brief sonication, plastocyanin is lost from the chloroplasts. When plastocyanin is added back to sonicated fragments, DCIP reduction is approximately doubled to 100 μmoles/mg chl per h.

2. When oxidized plastocyanin is added, a transient is observed when light is first turned on: this is due to a reduction of the plastocyanin before DCIP reduction begins. When reduced plastocyanin is added, a different transient occurs: this is due to a fast photoreduction of DCIP by the plastocyanin and is followed by the slower steady state reduction of DCIP by water. When light is turned off before complete reduction of DCIP, a transient reduction of oxidized plastocyanin by reduced DCIP is seen. Insensitivity of these transients to 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and the greater effectiveness of 710 nm light, along with the known capacity of plastocyanin to mediate electron transfer to System I, prove that an intrinsically fast reduction of DCIP occurs at a site close to the primary photoreduced product of System I.

3. After brief sonication and washing, no residual plastocyanin was detected in chloroplast fragments, and the rate of the slow DCIP reduction (about 50μmoles/mg chl per h) sustained by such fragments was essentially identical to that maintained by fragments of mutants lacking System I activity. Following et al.9, the simplest explanation for this slow DCIP reduction is that is occurs at a site close to System II and the system I is not involved.

4. A very slow transient reduction of DCIP occurs after extinguishing light; this presumably involves another reduction site close to System II, as suggested by 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号