首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2023年   2篇
  2022年   2篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2002年   2篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
2.
Post-translational modification of histones is a central aspect of gene regulation. Emerging data indicate that modification at one site can influence modification of a second site. As one example, histone H3 phosphorylation at serine 10 (Ser(10)) facilitates acetylation of lysine 14 (Lys(14)) by Gcn5 in vitro (, ). In vivo, phosphorylation of H3 precedes acetylation at certain promoters. Whether H3 phosphorylation globally affects acetylation, or whether it affects all acetylation sites in H3 equally, is not known. We have taken a genetic approach to this question by mutating Ser(10) in H3 to fix either a negative or a neutral charge at this position, followed by analysis of the acetylation states of the mutant histones using site-specific antibodies. Surprisingly, we find that conversion of Ser(10) to glutamate (S10E) or aspartate (S10D) causes almost complete loss of H3 acetylation at lysine 9 (Lys(9)) in vivo. Acetylation of Lys(9) is also significantly reduced in cells bearing mutations in the Glc7 phosphatase that increase H3 phosphorylation levels. Mutation of Ser(10) in H3 and the concomitant loss of Lys(9) acetylation has minimal effects on expression of a Gcn5-dependent reporter gene. However, synergistic growth defects are observed upon loss of GCN5 in cells bearing H3 Ser(10) mutations that are reminiscent of delays in G(2)/M progression caused by combined loss of GCN5 and acetylation site mutations. Together these results demonstrate that H3 phosphorylation directly causes site-specific and opposite changes in acetylation levels of two residues within this histone, Lys(9) and Lys(14), and they highlight the importance of these histone modifications to normal cell functions.  相似文献   
3.
A new copper(II) complex with tetradentate unsymmetrical ligand was prepared by one-pot condensation of methyl-2-pyrrole carboxylate, diethylenetriamine and copper(II) sulfate. The complex was characterized by elemental analysis, electronic and IR spectral, as well as X-ray crystal structure determination. The X-ray structure of the molecule reveals the copper(II) center is in a square planar environment through coordination by two nitrogen atoms of the amine, one amide nitrogen atom and one nitrogen atom of the pyrrole moieties, respectively. The copper(II) complex is neutral due to deprotonation of the amide and pyrrole groups.  相似文献   
4.
These studies relate to a working hypothesis that glycogen storage is facilitated in resting muscle by inhibiting glycolysis via inhibition of LDH, AK, and PFK-1 by ascorbate; when muscle is active, these isozymes combine with muscle proteins and are released and protected from inhibition by ascorbate and glycolysis proceeds. Focus in these studies is on the ability of G-actin and aldolase to prevent PFK-1 inhibition by ascorbate. We found that inhibition by ascorbate was PFK-1 concentration dependent; ascorbate does not inhibit above 200 nM PFK-1. We conclude that ascorbate inhibits PFK-1 dimers (and perhaps monomers) but not PFK-1 tetramers. Separation of PFK-1 dimers from tetramers was achieved with centrifugal filter devices and differences in their sensitivity to ascorbate inhibition were demonstrated. Some comparisons are made with attributes of AK inhibitions by ascorbate that, like PFK-1, are also enzyme concentration dependent. Discussions relate findings to cellular infrastructure and the role of ascorbate in glycogen synthesis.  相似文献   
5.
One of the hallmarks of apoptosis is the redistribution of phosphatidylserine (PS) from the inner-to-outer plasma membrane (PM) leaflet, where it functions as a ligand for phagocyte recognition and the suppression of inflammatory responses. The mechanism by which apoptotic cells externalize PS has been assumed to involve “scramblases” that randomize phospholipids across the PM bilayer. These putative activities, however, have not been unequivocally proven to be responsible for the redistribution of lipids. Because elevated cytosolic Ca2+ is critical to this process and is also required for activation of lysosome-PM fusion during membrane repair, we hypothesized that apoptosis could activate a “pseudo”-membrane repair response that results in the fusion of lysosomes with the PM. Using a membrane-specific probe that labels endosomes and lysosomes and fluorescein-labeled annexin 5 that labels PS, we show that the appearance of PS at the cell surface during apoptosis is dependent on the fusion of lysosomes with the PM, a process that is inhibited with the lysosomotrophe, chloroquine. We demonstrate that apoptotic cells evoke a persistent pseudo-membrane repair response that likely redistributes lysosomal-derived PS to the PM outer leaflet that leads to membrane expansion and the formation of apoptotic blebs. Our data suggest that inhibition of lysosome-PM fusion-dependent redistribution of PS that occurs as a result of chemotherapy- and radiotherapy-induced apoptosis will prevent PS-dependent anti-inflammatory responses that preclude the development of tumor- and patient-specific immune responses.There is increasing evidence that damaged plasma membranes (PM)2 trigger an emergency Ca2+-dependent exocytotic repair response that patches the affected area by adding lysosome-derived membranes at the cell surface disruption site (15). Because high cytosolic Ca2+ concentrations trigger lysosome-PM fusion, the elevated cytosolic Ca2+ levels characteristic to apoptotic cells may also evoke a pseudo-repair mechanism that promotes lysosome-PM fusion. Indeed, similar to normal emergency repair responses, apoptosis is characterized by the appearance of organelle proteins and lipids at the PM surface (68). One critical distinction between the apoptotic and physiologic repair processes is the preservation of membrane lipid asymmetry. In normal cells, any perturbation in PS sidedness is corrected by restoration of basal cytosolic [Ca2+], reactivation of the Ca2+-inhibited aminophospholipid translocase (9, 10), and subsequent facilitated transport of PS back to the inner membrane leaflet of the cell. In apoptotic cells, however, persistent high cytosolic [Ca2+] precludes reactivation of the aminophospholipid translocase, and the redistributed PS remains in the outer membrane leaflet (11). The apparent similarities in these processes combined with observations that apoptotic cells express PS at the cell surface prompted us to investigate whether lysosome to PM fusion plays a role in the redistribution of PS during apoptosis.  相似文献   
6.
The regulated loss of plasma membrane phosphatidylserine (PS) asymmetry is critical to many biological processes. In particular, the appearance of PS at the cell surface, a hallmark of apoptosis, prepares the dying cell for engulfment and elimination by phagocytes. While it is well established that PS externalization is regulated by activation of a calcium-dependent phospholipid scramblase activity in concert with inactivation of the aminophospholipid translocase, there is no evidence indicating that these processes are triggered and regulated by apoptotic regulatory mechanisms. Using a novel model system, we show that PS externalization is inducible, reversible, and independent of cytochrome c release, caspase activation, and DNA fragmentation. Additional evidence is presented indicating that the outward movement of plasma membrane PS requires sustained elevation in cytosolic Ca2+ in concert with inactivation of the aminophospholipid translocase and is inhibited by calcium channel blockers.  相似文献   
7.
Molecular Biology Reports - Understanding the molecular mechanism underlying the pathophysiology of primary skeletal tumors is crucial due to the tumor-related complications, incidence at...  相似文献   
8.

Introduction

The crucial role of innate immunity in the pathogenesis of systemic sclerosis (SSc) is well established, and in the past few years the hypothesis that Toll-like receptor 4 (TLR4) activation induced by endogenous ligands is involved in fibrogenesis has been supported by several studies on skin, liver, and kidney fibrosis. These findings suggest that TLR4 activation can enhance transforming growth factor beta (TGF-β) signaling, providing a potential mechanism for TLR4/Myeloid differentiation factor 88 (MyD88)-dependent fibrosis.

Methods

The expression of TLR4, CD14 and MD2 genes was analyzed by real-time polymerase chain reaction from skin biopsies of 24 patients with diffuse cutaneous SSc. In order to investigate the effects of the chronic skin exposure to endotoxin (Lipopolysaccharide (LPS)) in vivo we examined the expression of inflammation, TGF-β signaling and cellular markers genes by nanostring. We also identified cellular subsets by immunohistochemistry and flow cytometry.

Results

We found that TLR4 and its co-receptors, MD2 and CD14, are over-expressed in lesional skin from patients with diffuse cutaneous SSc, and correlate significantly with progressive or regressive skin disease as assessed by the Delta Modified Rodnan Skin Score. In vivo, a model of chronic dermal LPS exposure showed overexpression of proinflammatory chemokines, recruitment and activation of macrophages, and upregulation of TGF-β signature genes.

Conclusions

We delineated the role of MyD88 as necessary for the induction not only for the early phase of inflammation, but also for pro-fibrotic gene expression via activation of macrophages. Chronic LPS exposure might be a model of early stage of SSc when inflammation and macrophage activation are important pathological features of the disease, supporting a role for innate immune activation in SSc skin fibrosis.  相似文献   
9.
Considering the unfavourable response of breast cancer (BC) to treatment, we assessed the therapeutic potential hesperidin in mice bearing 4T1 BC tumours. Anti-tumour effects were assessed by measuring pathologic complete response (pCR), survival analysis, immunohistochemistry for E-cadherin, VEGF, MMP9, MMP2 and Ki-67, serum measurement of IFNγ and IL-4, and gene expression analysis of CD105, VEGFa, VEGFR2 and COX2. Survival of tumour-bearing mice was the highest in mice receiving a combination of hesperidin and doxorubicin (Dox) (80%) compared to the normal saline (43%), hesperidin 5 (54%), 10 (55.5%), 10 (60.5%) and 40 (66%) mg/kg, and 10 mg/kg Dox-treated (73%) groups (p < 0.0001 for all). Compared to the normal saline group, there was a significant elevation in IFNγ level in the animals receiving 20 (p = 0.0026) and 40 (p < 0.001) mg/kg hesperidin, 10 mg/kg Dox (p < 0.001), and combined hesperidin (20 mg/kg) and Dox (10 mg/kg) (p < 0.001). A significant reduction in the gene expression of CD 105 (p = 0.0106), VEGFa (p < 0.0001), VEGFR2 (p < 0.0001), and Cox2 (p = 0.034) and a significant higher pCR score (p = 0.006) were noticed in mice treated with 10 mg/kg Dox + 20 mg/kg hesperidin compared to those treated with 10 mg/kg Dox alone. Immunohistochemical staining showed significant reductions in Ki-67 (p < 0.001) and VEGF (p < 0.001) and a significant elevation in E-cadherin (p = 0.005) in the 10 mg/kg Dox + 20 mg/kg treatment group than in 10 mg/kg Dox alone group. Hesperidin can be considered as a potentially suitable anti-cancer agent for BC that can synergize with other chemotherapeutics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号