首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2013年   2篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有12条查询结果,搜索用时 218 毫秒
1.
A more comprehensive understanding of the factors governing tropical tree community turnover at different spatial scales is needed to support land‐management and biodiversity conservation. We used new forest inventory data from 263 permanent plots in the Carnegie Biodiversity‐Biomass Forest Plot Network spanning the eastern Andes to the western Amazonian lowlands of Peru to examine environmental factors driving genus‐level canopy tree compositional variation at regional and landscape scales. Across the full plot network, constrained ordination analysis indicated that all environmental variables together explained 23.8% of the variation in community composition, while soil, topographic, and climatic variables each explained 15.2, 10.9, and 17.0%, respectively. A satellite‐derived metric of cloudiness was the single strongest predictor of community turnover, and constrained ordination revealed a primary gradient of environmentally‐driven community turnover spanning from cloudy, high elevation sites to warm, wet, lowland sites. For three focal landscapes within the region, local environmental variation explained 13.4–30.8% of compositional variation. Community turnover at the landscape scale was strongly driven by topo‐edaphic factors in the two lowland landscapes examined and strongly driven by potential insolation and topography in the montane landscape. At the regional scale, we found that the portion of compositional variation that was uniquely explained by spatial variation was relatively small (2.7%), and was effectively zero within the three focal landscapes. Overall, our results show strong canopy tree compositional turnover in response to environmental gradients at both regional and landscape scales, though the most important environmental drivers differed between scales and among landscapes. Our results also highlight the usefulness of key satellite‐derived environmental covariates that should be considered when conducting biodiversity analyses in tropical forests.  相似文献   
2.
We report herein the molecular engineering of an efficient two-photon absorbing (TPA) chromophore based on a donor-donor bis-stilbenyl entity to allow conjugation with biologically relevant molecules. The dye has been functionalized using an isothiocyanate moiety to conjugate it with the amine functions of poly(ethylenimine) (PEI), which is a cationic polymer commonly used for nonviral gene delivery. Upon conjugation, the basic architecture and photophysical properties of the active TPA chromophore remain unchanged. At the usual N/P ratio (ratio of the PEI positive charges to the DNA negative charges) of 10 used for transfection, the transfection efficiency and cytotoxicity of the labeled PEI/DNA complexes were found to be comparable to those of the unlabeled PEI/DNA complexes. Moreover, when used in combination with unlabeled PEI (at a ratio of 1 labeled PEI to 3 unlabeled PEI), the labeled PEI does not affect the size of the complexes with DNA. The labeled PEI was successfully used in two-photon fluorescence correlation spectroscopy measurements, showing that at N/P = 10 most PEI molecules are free and the diffusion coefficient of the complexes is consistent with the 360 nm size measured by quasielastic light scattering. Finally, two-photon images of the labeled PEI/DNA complexes confirmed that the complexes enter into the cytoplasm of HeLa cells by endocytosis and hardly escape from the endosomes. As a consequence, the functionalized TPA chromophore appears to be an adequate tool to label the numerous polyamines used in nonviral gene delivery and characterize their complexes with DNA in two-photon applications.  相似文献   
3.
Baldeck  C. A.  Kembel  S. W.  Harms  K. E.  Yavitt  J. B.  John  R.  Turner  B. L.  Madawala  S.  Gunatilleke  N.  Gunatilleke  S.  Bunyavejchewin  S.  Kiratiprayoon  S.  Yaacob  A.  Supardi  M. N. N.  Valencia  R.  Navarrete  H.  Davies  S. J.  Chuyong  G. B.  Kenfack  D.  Thomas  D. W.  Dalling  J. W. 《Oecologia》2016,182(2):547-557
Oecologia - While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known...  相似文献   
4.
5.
Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ13C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.  相似文献   
6.
Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes (number of stems) that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large (24–50 ha) tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree sub-communities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census (1 cm diameter at breast height), which indicates that habitat filtering occurs during earlier life stages.  相似文献   
7.
Switching between replicative and translesion synthesis (TLS) DNA polymerases are crucial events for the completion of genomic DNA synthesis when the replication machinery encounters lesions in the DNA template. In eukaryotes, the translesional DNA polymerase η (Polη) plays a central role for accurate bypass of cyclobutane pyrimidine dimers, the predominant DNA lesions induced by ultraviolet irradiation. Polη deficiency is responsible for a variant form of the Xeroderma pigmentosum (XPV) syndrome, characterized by a predisposition to skin cancer. Here, we show that the FF483–484 amino acids in the human Polη (designated F1 motif) are necessary for the interaction of this TLS polymerase with POLD2, the B subunit of the replicative DNA polymerase δ, both in vitro and in vivo. Mutating this motif impairs Polη function in the bypass of both an N-2-acetylaminofluorene adduct and a TT-CPD lesion in cellular extracts. By complementing XPV cells with different forms of Polη, we show that the F1 motif contributes to the progression of DNA synthesis and to the cell survival after UV irradiation. We propose that the integrity of the F1 motif of Polη, necessary for the Polη/POLD2 interaction, is required for the establishment of an efficient TLS complex.  相似文献   
8.
We report here the synthesis and characterization of a new type of non-ionic blue fluorescent water-soluble chromophores specifically designed for two-photon absorption microscopy. The water solubility is induced by introduction of short oligo(ethylene glycol) monomethyl ether moieties. This work has led to low molecular weight dyes with efficient two-photon absorption cross sections and high fluorescence quantum yield in organic solvents as well as in aqueous solutions.  相似文献   
9.
Hydrogen peroxide (H2O2) is considered a major endogenous source of oxidative stress to oral bacteria and also is widely used in oral care products. Our study objectives were to identify specific targets for H2O2-induced damage to cells of Streptococcus mutans in suspensions and monospecies biofilms and to differentiate bacteriostatic and bactericidal actions of the peroxide. Streptococcus mutans was grown in suspension cultures and fed-batch biofilms for assessing relative sensitivities of viability, glycolysis, and protein synthesis to H2O2 damage. Biofilm cells were found to have essentially the same peroxide sensitivity as cells in suspensions. H2O2 at low concentrations of about 16.3 mmol/L was highly inhibitory for glycolysis and mainly bacteriostatic. The most sensitive target detected for glycolytic inhibition was glyceraldehyde-3-phosphate dehydrogenase with IC50 (50% inhibitory concentration) values of ca. 2.2 mmol/L for suspension cells and 2.3 mmol/L for biofilms with 15 min treatments. The phosphoenolpyruvate:glucose phosphotransferase pathway was less sensitive with an IC50 of ca. 10 mmol/L. Aldolase was not inhibited at bacteriostatic concentrations of the peroxide. For suspensions and biofilms, acidification somewhat diminished peroxide sensitivity, while increased temperature enhanced sensitivity. At concentrations above about 30 mmol/L, H2O2 became mainly bactericidal but not mutagenic for S. mutans. A major target for bactericidal damage was protein synthesis, thus rendering cells incapable of repairing or replacing oxidatively damaged proteins.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号