首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  5篇
  2021年   1篇
  2018年   1篇
  2010年   1篇
  2008年   1篇
  1995年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
INTRODUCTI0NThedifferentiati0nofcelIsalongthemonocyte-macr0phagepathwayandthesig-nalsinvo1vedinthesecel1sacquiringtheabilitytokilltum0rcellsarenotfllllyundersto0d.Wehavebeenstudingamoleculewhichappearst0beanimportantmemberofthecytokinenetworkinvo1vedintheregulati0nmonocyteactivation.ThiscytokinetermedP48wasisolatedfr0mthehllmannullcellleukemiacell1ineReh.IthasbeenpurifiedtohomogeneityandfOundtobedistinctfrominterferongamma,col0nystimulatingfactors(CSFs)andTNFalphaalldbeta[1,2].Func-ti…  相似文献   
2.
3.
The BMP and Wnt signalling pathways determine axis specification during embryonic development. Our previous work has shown that PAWS1 (also known as FAM83G) interacts with SMAD1 and modulates BMP signalling. Here, surprisingly, we show that overexpression of PAWS1 in Xenopus embryos activates Wnt signalling and causes complete axis duplication. Consistent with these observations in Xenopus, Wnt signalling is diminished in U2OS osteosarcoma cells lacking PAWS1, while BMP signalling is unaffected. We show that PAWS1 interacts and co‐localises with the α isoform of casein kinase 1 (CK1), and that PAWS1 mutations incapable of binding CK1 fail both to activate Wnt signalling and to elicit axis duplication in Xenopus embryos.  相似文献   
4.
The intermediate filament (IF) synemin gene encodes three IF proteins (H 180, M 150, L 41 kDa) with overlapping distributions. Synemin M was present early with vimentin and nestin. Synemin H was found later in the nervous system and mesodermic derivatives concomitantly with angiogenesis and the migration of neural crest cells. Synemin L appeared later in neurons. A series of in vitro cell cultures were done to identify the linkage between synemin isoforms and specific cell types of the central nervous system (CNS). The neurons and glia from the brains of humans and rats were cultured and double immunostaining done with antibodies against the H/M or L synemin isoforms and neural cell types (βIII-tubulin or NeuN) or astrocyte intermediate filaments (GFAP or vimentin). In neurons of the CNS, synemin H/M were co-expressed with GFAP, vimentin or nestin in glial cells, whereas synemin L was found in neurons.  相似文献   
5.
Vertebrate embryos generate striking Ca2+ patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca2+ during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca2+ along the dorsal–ventral axis, with higher Ca2+ concentrations in the ventral margin and lower Ca2+ concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca2+ pump with 0.5 μM thapsigargin elevates cytosolic Ca2+ in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left–right asymmetry. Brain defects include a left–right reversal of pitx2 expression in the dorsal diencephalon and a left–right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca2+ pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca2+ pump during gastrulation inhibits expression of no tail (ntl) and left–right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer’s vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca2+ plays a role in Kupffer’s vesicle function, influencing ciliary motility and translating the vesicle’s counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca2+ plays an additional role in the formation of Kupffer’s vesicle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号