首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   813篇
  免费   58篇
  国内免费   4篇
  875篇
  2023年   2篇
  2022年   20篇
  2021年   19篇
  2020年   16篇
  2019年   17篇
  2018年   20篇
  2017年   24篇
  2016年   30篇
  2015年   35篇
  2014年   49篇
  2013年   76篇
  2012年   80篇
  2011年   57篇
  2010年   46篇
  2009年   25篇
  2008年   39篇
  2007年   33篇
  2006年   40篇
  2005年   32篇
  2004年   25篇
  2003年   17篇
  2002年   17篇
  2001年   15篇
  2000年   10篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1996年   6篇
  1995年   8篇
  1994年   5篇
  1992年   9篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1987年   12篇
  1986年   7篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   3篇
  1969年   3篇
  1967年   2篇
排序方式: 共有875条查询结果,搜索用时 3 毫秒
1.
2.
3.
The obligate anaerobe Eubacterium lentum inactivated the cardiac glycoside digitoxin by reducing the double bond in the lactone ring. This conversion was quantitative when the substrate was incubated at a concentration of 10 micrograms/ml. The reduction reaction coincided with the growth phase of the bacterium. The stereochemical configuration at C-20 of the reduction product dihydrodigitoxin was found to be R. Incubation of digitoxigenin and its mono- and bisdigitoxosides individually with E. lentum led to the formation of their respective dihydro derivatives. The configuration at C-20 of these reduced metabolites was also found to be R.  相似文献   
4.
The mean geometry of the thiopeptide [Ca-N-C(=S)-Ca] unit has been derived from an analysis of X-ray crystal structure data, as well as MM2 and Gaussian 80/82 calculations. The conformational flexibilities of dithiopeptides with glycl- and alanyl-side chains have been investigated by molecular mechanics. Minimum energy conformations were examined using interactive computer graphics molecular modeling techniques. Alanyl-dithiopeptide substitution within an oligopeptide results in considerable restriction of conformational freedom whereas the effect is minimal for glycyl-dithiopeptide substitution. Polyglycyl-thiopeptide adopts a left-handed three or fourfold or right-handed threefold helical structure with favorable interchain C = S...H-N hydrogen bond interactions. A poly-L-alanyl-thiopeptide prefers a left-handed threefold poly-L-proline-like helical structure.  相似文献   
5.
The modes of binding of adenosine 2'-monophosphate (2'-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2'-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites--(1) The primary base binding site where the guanine of 2'-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3'-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2'-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2'-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1-2'-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2'-AMP and 2'-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme-2'-GMP complex.  相似文献   
6.
At low temperature and low salt concentration, both imino proton and 31p-nmr spectra of DNA complexes with the intercalators ethidium and propidium are in the slow-exchange region. Increasing temperature and/or increasing salt concentration results in an increase in the site exchange rate. Ring-current effects from the intercalated phenanthridinium ring of ethidium and propidium cause upfield shifts of the imino protons of A · T and G · C base pairs, which are quite similar for the two intercalators. The limiting induced chemical shifts for propidium and ethidium at saturation of DNA binding sites are approximately 0.9 ppm for A · T and 1.1 ppm for G · C base pairs. The similarity of the shifts for ethidium and propidium, in both the slow- and fast-exchange regions over the entire titration of DNA, shows that a binding model for propidium with neighbor-exclusion binding and negative ligand cooperativity is correct. The fact that a unique chemical shift is obtained for imino protons at intercalated sites over the entire titration and that no unshifted imino proton peaks remain at saturation binding of ethidium and propidium supports a neighbor-exclusion binding model with intercalators bound at alternating sites rather than in clusters on the double helix. Addition of ethidium and propidium to DNA results in downfield shifts in 31P-nmr spectra. At saturation ratios of intercalator to DNA base pairs in the titration, a downfield shoulder (approximately ?2.7 ppm) is apparent, which accounts for approximately 15% of the spectral area. The main peak is at ?3.9 to ?4.0 ppm relative to ?4.35 in uncomplexed DNA. The simplest neighbor-binding model predicts a downfield peak with approximately 50% of the spectral area and an upfield peak, near the chemical shift for uncomplexed DNA, with 50% of the area. This is definitely not the case with these intercalators. The observed chemical shifts and areas for the DNA complexes can be explained by models, for example, that involve spreading the intercalation-induced unwinding of the double helix over several base pairs and/or a DNA sequence- and conformation-dependent heterogeneity in intercalation-induced chemical shifts and resulting exchange rates.  相似文献   
7.
Wrinkled DNA.   总被引:15,自引:9,他引:6       下载免费PDF全文
The B form of poly d(GC):poly d(GC) in orthorhombic microcrystallites in oriented fibers has a secondary structure in which a dinucleotide is the repeated motif rather than a mononucleotide as in standard, smooth B DNA. One set of nucleotides (probably GpC) has the same conformations as the smooth form but the alternate (CpG) nucleotides have a different conformation at C3'-O3'. This leads to a distinctive change in the orientation of the phosphate groups. Similar perturbations can be detected in other poly d(PuPy):poly d(PuPy) DNAs such as poly d(IC):poly d(IC) and poly d(AT):poly d(AT) in their D forms which have tetragonal crystal environments. This suggests that such perturbations are intrinsic to all stretches of duplex DNA where purines and pyrimidines alternate and may play a role in the detection and exploitation of such sequences by regulatory proteins.  相似文献   
8.
Empirical energy calculations on cyclo-Gly-X with X- Phe, Tyr, Val, and Leu as a function of the side-chain torsion angles χ indicate that the conformation of minimum energy are characterized by χ1 = 60°, χ2 = 90° for Phe and Try, χ1 = ?60° for Val and χ1 = ?60°, χ2 = 180° and χ1 = 60° and χ2 = 150° for Leu. The minimum energy conformation of cyclo-Gly-Phe and cyclo-Gly-Val have the side chains of Phe and Val stacked over the poperazinedione ring as suggested by NMR and found for cyclo-Gly-Tyr crystal structure. In contrast, the Leu side chain is expected to exist in an extended or a quasi-folded form.  相似文献   
9.
Conformations of several high-mannose-type oligosaccharidesthat are generated during the biosynthetic degradation of Man9GlcNAc2to Man5GlcNAc2 have been studied by molecular dynamics (MD).Simulations were performed on NCI-FCRDC's Cray Y-MP 8D/8128supercomputer using Biosym's CVFF force field for 1000 Ps withdifferent initial conformations. The conformations of the two1,3- and the two 1,6-linkages in each oligomannose were different,suggesting that deriving oligosaccharide conformations basedon the conformational preferences of the constituent disaccharidefragments will not always yield correct results. Unlike otheroligomannoses, Man9GlcNAc2 appears to take more than one distinctconformation around the core 1,6-linkage. These various conformationsmay play an important role in determining the processing pathways.Using the data on the preferred conformations of these oligomannosesand the available experimental results, possible pathways forprocessing Man9GlcNAc2 to Man5GlcNAc2 by 1,2-linkage-specificmannosidases have been proposed. Conformational analysis ofMan5GlcNAc2 indicates that the addition of ß1,2-GlcNActo the 1,3-linked core mannose, besides serving as a prerequisitefor mannosidase II action as suggested earlier, may also preventthe removal of 1,3-mannose. The MD simulations also suggestthat the processing of the precursor oligosaccharide duringAsn-linked complex and hybrid glycan biosynthesis proceeds ina well-defined pathway involving more than one 1,2-linkage-specificmannosidase. Knowledge of the conformation of the processingintermediates obtained from the present study can be used todesign highly specific substrate analogues to inhibit a particularmannosidase, thereby blocking one processing pathway withoutinterfering with the others. carbohydrates conformation glycosidase inhibitors mannosidase oligosaccharide processing  相似文献   
10.
Enzymatic 3-O-sulfation of terminal ß-Gal residueswas investigated by screening sulfotransferase activity presentin 37 human tissue specimens toward the following synthesizedacceptor moieties: Galß1,3GalNAc-O-Al, Galß1,4GlcNAcß-O-Al,Galß1,3GlcNAcß-O-Al, and mucin-type Galß1,4GlcNAcß1,6(Galß1,3)GalNAc-O-Bnstructures containing a C-3 methyl substituent on either Gal.Two distinct types of Gal: 3-O-sulfotransferases were revealed.One (Group A) was specific for the Galß1, 3GalNAc-linkage and the other (Group B) was directed toward the Galß1,4GlcNAcbranch ß1,6 linked to the blood group T hapten. Enzymeactivities found in breast tissues were unique in showing astrict specificity for the T-hapten. Galß-O-allylor benzyl did not serve as acceptors for Group A but were veryactive with Group B. An exainination of activity present insix human sera revealed a specificity of the serum enzyme towardß1,3 linked Gal, particularly, the T-hapten withoutß1,6 branching. Group A was highly active toward T-haptenlacrylamidecopolymer, anti-freeze glycoprotein, and fetuin O-glycosidicasialo glycopeptide; less active toward fetuin triantennaryasialo glycopeptide; and least active toward bovine IgG diantennaryglycopeptide. Group B was moderately and highly active, respectively,with the latter two glycopeptides noted and least active withthe first two. Competition experiments performed with Galß1,3GaLNAc-O-Aland Galß1,4GlcNAcß1,6(Galß1,3)GalNAc-O-Bnhaving a C-3 substituent (methyl or sulfate) on either Gal reinforcedearlier findings on the specificity characteristics of GroupA and Group B. Group A displayed a wider range of optimal activity(pH 6.0–7.4), whereas Group B possessed a peak of activityat pH 7.2. Mg2+ stimulated Group A 55% and Group B 150%, whereasMn+2 stimulated Group B 130% but inhibited Group A 75%. Ca2+stimulated Group B 100% but inhibited Group A 35%. Group A andGroup B enzymes appeared to be of the same molecular size (<100,000Da) as observed by Sephacryl S-100 HR column chromatography.The following effects upon Gal: 3-O- sulfotransferase activitiesby fucose, sulfate, and other substituents on the carbohydratechains were noted. (1) A methyl or GlcNAc substituent on C-6of GalNAc diminished the ability of Galß1,3GalNAc-O-Alto act as an acceptor for Group A. (2) An 1,3-fucosyl residueon the ß1,6 branch in the mucin core structure didnot affect the activity of Group A toward Gal linked ß1,3to GalNAc-. (3) Lewis x and Lewis a terminals did not serveas acceptors for either Group A or B enzymes. (4) Eliminationof Group B activity on Gal in the ß1,6 branch owingto the presence of a 3-fucosyl or 6-sulfo group on GlcNAc didnot hinder any action toward Gal linked ß1,3 to GalNAc.(5) Group A activity on Gal linked ß1,3 to GalNAcremained imaffected by 3'-sulfation of the ß1,6 branch.The reverse was true for Group B. (6) The acceptor activityof the T-hapten was increased somewhat upon C-6 sulfation ofGalNAc, whereas, C-6 slalylation resulted in an 85% loss ofactivity. (7) A novel finding was that Galß1,4GlcNAcß-O-Aland Galß1,3GlcNAcß-O-M, upon C-6 sulfationof the GlcNAc moiety, became 100% inactive and 5- to 7-foldactive, respectively, in their ability to serve as acceptorsfor Group B. human tissues glycoprotein galactose:sulfotransferase specificities kinetic properties  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号