首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1978年   2篇
  1977年   1篇
  1973年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
It has been shown on female Wistar rats, that as a result of three months sexual deprivation, in a cage of special construction, they may develop an emotional stress leading to a change in mobility and to a discordance in the functional system maintaining the optimal level of sexual hormones in their organism. A design has been presented of a cage for creating a sexual conflict situation, which is a new model of emotional stress.  相似文献   
2.
Binyukov  V. I.  Zhigacheva  I. V.  Mil’  E. M.  Krikunova  N. I.  Rasulov  M. M. 《Biophysics》2021,66(2):248-254

This study was conducted to investigate the antistress potential of resveratrol, a natural polyphenol, in models that reproduce the conditions of acute hypobaric hypoxia and acute alcohol intoxication. Acute alcohol intoxication and acute hypobaric hypoxia induced an increase in the intensity of lipid peroxidation in the membranes of liver mitochondria from mice. Activation of lipid peroxidation was accompanied by swelling and variations in the levels of fatty acids with C18 and C20–22 in the composition of the total lipid fraction of mitochondrial membranes. The index of the unsaturation of fatty acids with C18 was decreased by 7.5% (from 1.69 ± 0.01 to 1.52 ± 0.01). Furthermore, the (20:3ω6+20:5ω3)/22:6ω3 index decreased from 0.23 ± 0.02 to 0.13 ± 0.01 for fatty acids under acute hypobaric hypoxia conditions, suggesting a decrease in eicosanoid metabolism. The administration of 2 × 10–5 mol/kg of resveratrol in animals for 5 days prevented changes in fatty acid composition, inhibiting activation of lipid peroxidation and swelling of mitochondria, thereby affecting physiological parameters. Thus, the adaptogenic properties of resveratrol may be ascribed to the prevention of lipid peroxidation in mitochondrial membranes, which probably affects the functional state of these organelles, contributing to the maintenance of cellular energy metabolism under stress conditions.

  相似文献   
3.
4.
5.
Changes in leaf sugar concentrations are a possible mechanism of short‐term adaptation to temperature changes, with natural fluctuations in sugar concentrations in the field expected to modify the heat sensitivity of respiration. We studied temperature‐response curves of leaf dark respiration in the temperate tree Populus tremula (L.) in relation to leaf sugar concentration (1) under natural conditions or (2) leaves with artificially enhanced sugar concentration. Temperature‐response curves were obtained by increasing the leaf temperature at a rate of 1°C min?1. We demonstrate that respiration, similarly to chlorophyll fluorescence, has a break‐point at high temperature, where respiration starts to increase with a faster rate. The average break‐point temperature (TRD) was 48.6 ± 0.7°C at natural sugar concentration. Pulse‐chase experiments with 14CO2 demonstrated that substrates of respiration were derived mainly from the products of starch degradation. Starch degradation exhibited a similar temperature‐response curve as respiration with a break‐point at high temperatures. Acceleration of starch breakdown may be one of the reasons for the observed high‐temperature rise in respiration. We also demonstrate that enhanced leaf sugar concentrations or enhanced osmotic potential may protect leaf cells from heat stress, i.e. higher sugar concentrations significantly modify the temperature‐response curve of respiration, abolishing the fast increase of respiration. Sugars or enhanced osmotic potential may non‐specifically protect respiratory membranes or may block the high‐temperature increase in starch degradation and consumption in respiratory processes, thus eliminating the break‐points in temperature curves of respiration in sugar‐fed leaves.  相似文献   
6.
Photosynthesis is a complex process whose rate is affected by many biochemical and biophysical factors. Fortunately, it is possible to determine, or at least estimate, many of the most important parameters using a combination of optical methods and gas transient analyses. We describe here a computer‐operated routine that has been developed to make detailed assessments of photosynthesis at a comprehensive level. The routine comprised the following measurements: steady‐state light and CO2 response curves of net CO2 assimilation at 21 and 2 kPa O2; transients from limiting to different saturating CO2 concentrations at 2 kPa O2; post‐illumination CO2 fixation transient; dark–light induction of O2 evolution; O2 yield from one saturating single‐turnover flash; chlorophyll fluorescence F0, Fs and Fm during the light and CO2 response curves; leaf transmission at 820 nm (P700+) during the light and CO2 response curves; post‐illumination re‐reduction time of P700+. The routine was executed on a two‐channel fast‐response gas exchange measurement system (A. Laisk and V. Oja: Dynamic Gas Exchange of Leaf Photosynthesis. CSIRO, Canberra, Australia). Thirty‐six intrinsic characteristics of the photosynthetic machinery were derived, including quantum yield of CO2 fixation (YCO2), time constant of P700 re‐reduction (τ′), relative optical cross‐sections of PSII and PSI antennae (aII, aI), PSII and PSI density per leaf area unit, plastoquinone pool, total mesophyll resistance, mesophyll diffusion resistance, Vm, Km(CO2) and CO2/O2 specificity of Rubisco, RuBP pool at CO2 limitation (assimilatory charge). An example of the routine and calculations are shown for one leaf and data are presented for leaves of 8‐year‐old‐trees of two birch clones growing in Suonenjoki Forest Research Station, Finland, during summer 2000. Parameters YCO2, basic τ′, aII, aI, Km(CO2) and Ks varied little in different leaves [relative standard deviation (RSD) < 7%], other parameters scattered widely (RSD typically 10–40%). It is concluded that the little scattered parameters are determined by basic physico‐chemical properties of the photosynthetic machinery whereas the widely scattered parameters are adjusting to growth conditions. The proposed non‐destructive routine is suitable for diagnosing the photosynthetic machinery of leaves and may be applied in plant ecophysiology and in genetic engineering of plants.  相似文献   
7.
8.
9.
10.
Photosynthesis rate (An) becomes unstable above a threshold temperature, and the recovery upon return to low temperature varies because of reasons not fully understood. We investigated responses of An, dark respiration and chlorophyll fluorescence to supraoptimal temperatures of varying duration and kinetics in Phaseolus vulgaris asking whether the instability of photosynthesis under severe heat stress is associated with cellular damage. Cellular damage was assessed by Evans blue penetration (enhanced membrane permeability) and by H2O2 generation [3,3′‐diaminobenzidine 4HCl (DAB)‐staining]. Critical temperature for dark fluorescence (F0) rise (TF) was at 46–48 °C, and a burst of respiration was observed near TF. However, An was strongly inhibited already before TF was reached. Membrane permeability increased with temperature according to a switch‐type response, with enhanced permeability observed above 48 °C. Experiments with varying heat pulse lengths and intensities underscored the threshold‐type loss of photosynthetic function, and indicated that the degree of photosynthetic deterioration and cellular damage depended on accumulated heat‐dose. Beyond the ‘point of no return’, propagation of cellular damage and reduction of photosynthesis continued upon transfer to lower temperatures and photosynthetic recovery was slow or absent. We conclude that instability of photosynthesis under severe heat stress is associated with time‐dependent propagation of cellular lesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号