首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   11篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   7篇
  2013年   24篇
  2012年   20篇
  2011年   15篇
  2010年   11篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1978年   2篇
  1977年   1篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1967年   1篇
  1962年   1篇
  1940年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
1.
Extracts of rice on which an isolate of Fusarium chlamydosporum had been cultured were toxic to brine shrimps. The toxic fraction was purified by flash chromatography to give two compounds which were identified by UV, IR, NMR and mass spectroscopy at the 6 and 6 isomers of 5-hydroxy-4-methoxy-6, 8a-dimethyl-6,7-dihydro-2H,8aH-pyrano[2,3-b]pyran-2-one. These lactones for which the name chlamydosporol is proposed have not been reported previously. When tested in brine shrimp and HeLa cell assays, the LC50 concentration for a mixture of the isomers was approximately 400 g/ml in both systems.  相似文献   
2.
The mode of inheritance of resistance to green leafhopper in 12 cultivars of riceOryza saliva L. was studied. Seedlings of parent and hybrid populations were artificially infested with second- and third-instar virus-free green leafhopper nymphs. Seedling reaction was scored when TNI, the susceptible check, was completely killed. The results revealed that single dominant genes confer resistance in six varieties, two independent dominant genes in four varieties, and single recessive genes in two varieties. The single dominant genes in Sri Gaya, ARC 7320, and T23 and one of the two genes in Aswina and Bhura Rata 2 are allelic toGlh-1; while Bhawalia hasGlh-5 gene. The second gene of Bhura Rata 2 is allelic to IR28 gene. Resistance in Chamar is controlled by two independent genes one of which is allelic toGlh-5 and the other allelic to IR28 gene. Bazal hasGlh-2 andGlh-5. The single recessive gene in ARC 7012 is allelic toglh-4 but the single recessive gene in DV85 is nonallelic to and independent ofglh-4. This new recessive gene is designated asglh-8. The single dominant genes of Dumai, Gadur, and the second gene of Aswina are nonallelic to all the known genes for resistance.  相似文献   
3.
A new flavone glucoside macrophylloside has been isolated from the whole plant of Primula macrophylla and its structure was determined by spectroscopic methods as 2′-hydroxy-7-O-β- -glucopyranosyloxyflavone. Sitosterol glucoside was also isolated for the first time from this plant.  相似文献   
4.
5.
The plasmid pND71, which encodes beta-glucosidase (cellobiase) activity, cloned from the cellulolytic Pseudomonad, PS2-2, was mobilized by conjugation into 10 Pseudomonas strains. The highest specific activity was produced by 17498 (pND71) and the properties of the enzyme produced from this transconjugant were studied. The enzyme was shown to be cell associated, to have a temperature optimum of 37 degrees C, a pH optimum of 7.0 and Km values of 1.33 and 2.94 mM for pNPG and cellobiose respectively. It was competitively inhibited by glucose, with a Ki of 30 mM. Evidence was obtained which suggested that the enzyme was produced constitutively and that synthesis was not repressed by glucose. When culture preparations were used in combination with Trichoderma reesei QM9414 and C30 enzyme preparations to saccharify cellulose, 17498 (pND71) was more effective than preparations of PS2-2 in acting synergistically with T. reesei to solubilize more carbohydrate and produce more glucose.  相似文献   
6.
Poly(ADP-ribose) prepared by incubating NAD+ with rat liver nuclei inhibited the hydroxylation reaction catalyzed by purified prolyl hydroxylase (proline,2-oxoglutarate dioxygenase, EC 1.14.11.2) in vitro. Near complete inhibition of the enzyme was seen in the presence of 6 nM (ADP-Rib)18 with a Ki(app) of 1.5 nM. The monomer unit of poly(ADP-ribose), adenosine diphosphoribose (ADP-Rib), was found to be a weak inhibitor. On the other hand, poly(ADP-ribose)-derived phosphoribosyl-AMP (PRib-AMP) and its dephosphorylated product, ribosyl-ribosyl-adenine (Rib-RibA), inhibited the enzyme in nanomolar concentrations (Ki(app) 16.25 nM). The order of inhibition was (ADP-Rib)18 greater than PRib-AMP, Rib-RibA much greater than ADP-Rib. These results suggested that the 1"----2' ribosyl-ribosyl moiety in these compounds was involved in the inhibition of the enzyme. The possibility that intracellular prolyl hydroxylase is regulated by the involvement of ADP-ribosylation reactions was examined in confluent cultures of skin fibroblast treated with 20 mM lactate. The activity of prolyl hydroxylase was stimulated by 145% over that of untreated cultures. In the lactate-treated cells, the level of NAD+ was lowered and the total ADP-ribosylation of cellular proteins reduced by 40%. These observations imply that the lactate-induced activation of cellular prolyl hydroxylase is mediated by a reduction in ADP-ribosylation and that the synthesis and degradation of ADP-ribose moiety(ies) may possibly regulate prolyl hydroxylase activity in vivo.  相似文献   
7.

Low-temperature and high humidity are typical environmental factors in the plastic tunnel and solar greenhouse during the cold season that restricts plant growth and development. Herein, we investigated the impact of different combinations of low-temperature and high humidity (day/night: T1 15/10 °C?+?95%, T2 12/8 °C?+?95%, and T3 9/5 °C?+?95%) along with a control (CK 25/18 °C?+?80%) on cucumber cultivars viz: Zhongnong37 (ZN37: resistant) and Shuyanbailv (SYB: sensitive). The low-temperature and high humidity stresses increased electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) and intercellular concentration of carbon dioxide (Ci), and reduced morphological indices, relative water content (RWC), net photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (E) and leaf pigments in both cultivars as compared to control (CK). Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were decreased in cv. SYB under stress conditions as compared to cv. ZN37. Low-temperature and high humidity treatments showed an increase in proline and soluble protein content in cv. ZN37 as compared to cv. SYB. Abscisic acid (ABA) and jasmonic acid (JA) were augmented while indole-3-acetic acid (IAA), zeatin (ZT), zeatin riboside (ZR), and gibberellic acid (GA) were decreased in both cultivars. Under T3 (9/5 °C?+?95%), Pn, protoporphyrin, and ZT were extremely decreased by 71.3%, 74.3%, and 82.4%, respectively, in cv. SYB compared to control. Moreover, principal component analysis (PCA) based on physiochemical traits confirmed that cv. ZN37 had the strongest correlation with antioxidant enzymes, proline, and soluble protein content than cv. SYB under low-temperature and high humidity treatments. Our results suggest that a stress-tolerant cultivar mitigates stress damage in cucumber transplants by regulating photosynthetic efficiency, antioxidant capacity and hormonal profile when compared to a stress-sensitive cultivar.

  相似文献   
8.
9.
Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca2+ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens.  相似文献   
10.
Heavy-metal toxicity in soil is one of the major constraints for oilseed rape (Brassica napus L.) production. One of the best ways to overcome this constraint is the use of growth regulators to induce plant tolerance. Response to cadmium (Cd) toxicity in combination with a growth regulator, 5-aminolevulinic acid (ALA), was investigated in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 100, and 500 μM) and three levels of foliar application of ALA (0, 12.5, and 25 mg l?1). Cd decreased plant growth and the chlorophyll concentration in leaves. Foliar application of ALA improved plant growth and increased the chlorophyll concentration in the leaves of Cd-stressed plants. Significant reductions in photosynthetic parameters were observed by the addition of Cd alone. Application of ALA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. ALA also reduced the Cd content in shoots and roots, which was elevated by high concentrations of Cd. The microscopic studies of leaf mesophyll cells under different Cd and ALA concentrations showed that foliar application of ALA significantly ameliorated the Cd effect and improved the structure of leaf mesophyll cells. However, the higher Cd concentration (500 μM) could totally damage leaf structure, and at this level the nucleus and intercellular spaces were not established as well; the cell membrane and cell wall were fused to each other. Chloroplasts were totally damaged and contained starch grains. However, foliar application of ALA improved cell structure under Cd stress and the visible cell structure had a nucleus, cell wall, and cell membrane. These results suggest that under 15-day Cd-induced stress, application of ALA helped improve plant growth, chlorophyll content, photosynthetic gas exchange capacity, and ultrastructural changes in leaf mesophyll cells of the rape plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号