首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   9篇
  2023年   4篇
  2022年   5篇
  2021年   4篇
  2020年   7篇
  2019年   34篇
  2018年   3篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   5篇
  2013年   14篇
  2012年   12篇
  2011年   13篇
  2010年   13篇
  2009年   6篇
  2008年   7篇
  2007年   2篇
  2006年   7篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  1999年   2篇
  1996年   1篇
  1994年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有178条查询结果,搜索用时 31 毫秒
1.
Plasmepsin (Plm) has been identified as an important target for the development of new antimalarial drugs, since its inhibition leads to the starvation of Plasmodium falciparum. A series of substrate-based dipeptide-type Plm II inhibitors containing the hydroxymethylcarbonyl isostere as a transition-state mimic were synthesized. The general design principle was provision of a conformationally restrained hydroxyl group (corresponding to the set residue at the P2' position in native substrates) and a bulky unit to fit the S2' pocket.  相似文献   
2.
International Journal of Peptide Research and Therapeutics - LL-37 is a 37 amino acid long cationic peptide belonging to the cathelicidin family of antimicrobial peptides. Limited investigations...  相似文献   
3.
Elevated CO2 interactions with other factors affects the plant performance. Regarding the differences between cultivars in response to CO2 concentrations, identifying the cultivars that better respond to such conditions would maximize their potential benefits. Increasing the ability of plants to benefit more from elevated CO2 levels alleviates the adverse effects of photoassimilate accumulation on photosynthesis and increases the productivity of plants. Despite its agronomic importance, there is no information about the interactive effects of elevated CO2 concentration and plant growth regulators (PGRs) on potato (Solanum tuberosum L.) plants. Hence, the physiological response and source-sink relationship of potato plants (cvs. Agria and Fontane) to combined application of CO2 levels (400 vs. 800 µmol mol−1) and plant growth regulators (PGR) [6-benzylaminopurine (BAP) + Abscisic acid (ABA)] were evaluated under a controlled environment. The results revealed a variation between the potato cultivars in response to a combination of PGRs and CO2 levels. Cultivars were different in leaf chlorophyll content; Agria had higher chlorophyll a, b, and total chlorophyll content by 23, 43, and 23%, respectively, compared with Fontane. The net photosynthetic rate was doubled at the elevated compared with the ambient CO2. In Agria, the ratio of leaf intercellular to ambient air CO2 concentrations [Ci:Ca] was declined in elevated-CO2-grown plants, which indicated the stomata would become more conservative at higher CO2 levels. On the other hand, the increased Ci:Ca in Fontane showed a stomatal acclimation to higher CO2 concentration. The higher leaf dark respiration of the elevated CO2-grown and BAP + ABA-treated plants was associated with a higher leaf soluble carbohydrates and starch content. Elevated CO2 and BAP + ABA shifted the dry matter partitioning to the belowground more than the above-media organs. The lower leaf soluble carbohydrate content and greater tuber yield in Fontane might indicate a more efficient photoassimilate translocation than Agria. The results highlighted positive synergic effects of the combined BAP + ABA and elevated CO2 on tuber yield and productivity of the potato plants.  相似文献   
4.

Noble metals, especially Ag and Au nanostructures, have unique and adjustable optical attributes in terms of surface plasmon resonance. In this research, the effect of Ag and Au nanoparticles with spherical and rod shapes on the light extraction efficiency and the FWHM of OLED structures was investigated using the finite difference time domain (FDTD) method. The simulation results displayed that by changing the shape and size of Ag and Au nanostructures, the emission wavelength can be adjusted, and the FWHM can be reduced. The presence of Ag and Au nanoparticles in the OLEDs showed a blue and red shift of the emission wavelength, respectively. Also, the Ag and Au nanorods caused a significant reduction in the FWHM and a shift to the longer wavelengths in the structures. The structures containing Ag nanorods showed the narrowest FWHM and longer emission wavelength than the other structures.

  相似文献   
5.
Diabetic retinopathy (DR), a leading cause of vision loss and a significant source of morbidity, is the most common ocular complication of prolonged diabetes mellitus. Most therapeutic approaches address DR by preventing or destroying neovasculature; however, this fails to eliminate pathogenic causes. Mesenchymal stem cells (MSCs) are a promising candidate for cell therapy because they have unique regenerative potential and provide an option to manage retinal injuries. Transplantation of MSCs in rats with diabetes induced by streptozocin administration was shown to ameliorate DR. However, the poor viability and homing of MSCs after transplantation may reduce the efficacy of cell therapy. Intravitreal transplantation of MSCs was shown to augment vascular endothelial growth factor (VEGF). More recent studies have found a central role for VEGF in vascular lesion formation in DR and proposed blockage of VEGF as an effective approach to manage DR. Atorvastatin, a 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitor, has been proven to decrease VEGF production of MSCs under hypoxic conditions. It has also been demonstrated that atorvastatin increases the viability of MSCs through the adenosine monophosphate-activated protein kinase-endothelial nitric oxide synthase signaling pathway. There is also evidence that nitric oxide improves homing of MSCs by increasing chemokine-related receptor CXCR4 expression. It could be hypothesized that co-administration of MSCs with atorvastatin may be a significant step forward in development of an efficient MSC therapy of DR through preventing excess VEGF production by MSCs under hypoxic conditions as well as increasing the viability and homing of transplanted MSCs.  相似文献   
6.
3-Hydroxybutyrate, one of the main blood ketone bodies, has been considered as a critical indicator for diagnosis of diabetic ketoacidosis. Biosensors designed for detection of 3-hydroxybutyrate with advantages of precision, easiness and speedy performance have attracted increasing attention. This study attempted to develop a 3-hydroxybutyrate dehydrogenase-based biosensor in which single-walled carbon nanotubes (SWCNT) was used in order to immobilize the cofactor, NAD+, on the surface of screen-printed electrode. The formation of NAD+–SWCNT conjugates was assessed by electrochemistry and electron microscopy. Cyclic voltammetry was used to analyze the performance of this biosensor electrochemically. The considerable shelf life and reliability of the proposed biosensor to analyze real sample was confirmed by this method. The reduction in the over potential of electrochemical oxidation of NADH to ?0.15 V can be mentioned as a prominent feature of this biosensor. This biosensor can detect 3-hydroxybutyrate in the linear range of 0.01–0.1 mM with the low detection limit of 0.009 mM. Simultaneous application of screen-printed electrode and SWCNT has made the biosensor distinguished which can open new prospects for detection of other clinically significant metabolites.  相似文献   
7.
A new series of coumarin‐3‐carboxamide‐N‐morpholine hybrids 5a – 5l was designed and synthesized as cholinesterases inhibitors. The synthetic approach for title compounds was started from the reaction between 2‐hydroxybenzaldehyde derivatives and Meldrum's acid to afford corresponding coumarin‐3‐carboxylic acids. Then, amidation of the latter compounds with 2‐morpholinoethylamine or N‐(3‐aminopropyl)morpholine led to the formation of the compounds 5a – 5l . The in vitro inhibition screen against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) revealed that most of the synthesized compounds had potent AChE inhibitory while their BuChE inhibitions are moderate to weak. Among them, propylmorpholine derivative 5g (N‐[3‐(morpholin‐4‐yl)propyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing an unsubstituted coumarin moiety and ethylmorpholine derivative 5d (6‐bromo‐N‐[2‐(morpholin‐4‐yl)ethyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing a 6‐bromocoumarin moiety showed the most activity against AChE and BuChE, respectively. The inhibitory activity of compound 5g against AChE was 1.78 times more than that of rivastigmine and anti‐BuChE activity of compound 5d is approximately same as rivastigmine. Kinetic and docking studies confirmed the dual binding site ability of compound 5g to inhibit AChE.  相似文献   
8.
Melatonin is a multifunctional hormone that has long been known for its antitumoral effects. An advantage of the application of melatonin in cancer therapy is its ability to differentially influence tumors from normal cells. In this review, the roles of melatonin adjuvant therapy in human cancer are discussed. Combination of melatonin with chemotherapy could provide synergistic antitumoral outcomes and resolve drug resistance in affected patients. This combination reduces the dosage for chemotherapeutic agents with the subsequent attenuation of side effects related to these drugs on normal cells around tumor and on healthy organs. The combination therapy increases the rate of survival and improves the quality of life in affected patients. Cancer cell viability is reduced after application of the combinational melatonin therapy. Melatonin does all these functions by adjusting the signals involved in cancer progression, re-establishing the dark/light circadian rhythm, and disrupting the redox system for cancer cells. To achieve effective therapeutic outcomes, melatonin concentration along with the time of incubation for this indoleamine needs to be adjusted. Importantly, a special focus is required to be made on choosing an appropriate chemotherapy agent for using in combination with melatonin. Because of different sensitivities of cancer cells for melatonin combination therapy, cancer-specific targeted therapy is also needed to be considered. For this review, the PubMed database was searched for relevant articles based on the quality of journals, the novelty of articles published by the journals, and the number of citations per year focusing only on human cancers.  相似文献   
9.
Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients’ survival and quality of life. Adjuvant therapy using various types of antibodies or immunomodulatory agents has suggested modulating tumor response. Resistance to apoptosis is the main reason for radioresistance and chemoresistance of most of the cancers, and also one of the pivotal targets for improving cancer therapy is the modulation of apoptosis signaling pathways. Apoptosis can be induced by intrinsic or extrinsic pathways via stimulation of several targets, such as membrane receptors of tumor necrosis factor-α and transforming growth factor-β, and also mitochondria. Curcumin is a naturally derived agent that induces apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing reactive oxygen species (ROS) production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of NF-κB and COX-2, which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis PI3K signaling and increase the expression of MAPKs to induce endogenous production of ROS. In this paper, we aimed to review the molecular mechanisms of curcumin-induced apoptosis in cancer cells. This action of curcumin could be applicable for use as an adjuvant in combination with other modalities of cancer therapy including radiotherapy and chemotherapy.  相似文献   
10.
Tumor microenvironment (TME) is a host for a complex network of heterogeneous stromal cells with overlapping or opposing functions depending on the dominant signals within this milieu. Reciprocal paracrine interactions between cancer cells with cells within the tumor stroma often reshape the TME in favor of the promotion of tumor. These complex interactions require more sophisticated approaches for cancer therapy, and, therefore, advancing knowledge about dominant drivers of cancer within the TME is critical for designing therapeutic schemes. This review will provide knowledge about TME architecture, multiple signaling, and cross communications between cells within this milieu, and its targeting for immunotherapy of cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号