首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  2021年   1篇
  2013年   2篇
  2011年   1篇
  2008年   2篇
  2005年   1篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 171 毫秒
1.
In arid and semi-arid regions of the world, such as Mongolia, the future of water resources under a warming climate is of particular concern. The influence of increasing temperatures on precipitation is difficult to predict because precipitation trends in coming decades could have a high degree of spatial variability. In this study, we applied a rotated principal component analysis (RPCA) to a network of 20 tree-ring chronologies across central Mongolia from 1790 to 1994 to evaluate spatial hydroclimatic variability and to place recent variability in the context of the past several centuries. The RPCA results indicate that the network consists of four tree-growth anomaly regions, which were found to be relatively stable through time and space. Correlation analyses reveal spatial linkages between the tree-growth anomalies and instrumental data, where annual streamflow variability was strongly associated with tree-growth anomalies from their respective regions from 1959 to 1994 (r = 0.52–0.64, p < 0.05). This study highlights the extent of spatial variability in hydroclimate across central Mongolia and emphasizes the value of using tree-ring networks in locations with limited instrumental records.  相似文献   
2.
Biosynthesis of iron-sulfur clusters (Fe-S) depends on multiprotein systems. Recently, we described the SUF system of Escherichia coli and Erwinia chrysanthemi as being important for Fe-S biogenesis under stressful conditions. The SUF system is made of six proteins: SufC is an atypical cytoplasmic ABC-ATPase, which forms a complex with SufB and SufD; SufA plays the role of a scaffold protein for assembly of iron-sulfur clusters and delivery to target proteins; SufS is a cysteine desulfurase which mobilizes the sulfur atom from cysteine and provides it to the cluster; SufE has no associated function yet. Here we demonstrate that: (i) SufE and SufS are both cystosolic as all members of the SUF system; (ii) SufE is a homodimeric protein; (iii) SufE forms a complex with SufS as shown by the yeast two-hybrid system and by affinity chromatography; (iv) binding of SufE to SufS is responsible for a 50-fold stimulation of the cysteine desulfurase activity of SufS. This is the first example of a two-component cysteine desulfurase enzyme.  相似文献   
3.
Proteins containing [Fe-S] clusters perform essential functions in all domains of life. Previously, we identified the sufABCDSE operon as being necessary for virulence of the plant pathogen Erwinia chrysanthemi. In addition, we collected preliminary evidence that the sufABCDSE operon might be involved in the assembly of [Fe-S] clusters. Of particular interest are the sufB, sufC and sufD genes, which are conserved among Eubacteria, Archaea, plants and parasites. The present study establishes SufC as an unorthodox ATPase of the ABC superfamily that is located in the cytosol, wherein it interacts with both SufB and SufD. Moreover, under oxidative stress conditions, SufC was found to be necessary for the activity of enzymes containing oxygen-labile [Fe-S] clusters, but dispensable for glutamate synthase, which contains an oxidatively stable [Fe-S] cluster. Lastly, we have shown SufBCD to be essential for iron acquisition via chrysobactin, a siderophore of major importance in virulence. We discuss a model wherein the SufBCD proteins contribute to bacterial pathogenicity via their role in the assembly of [Fe-S] clusters under oxidative stress and iron limitation.  相似文献   
4.
The universal stress protein (UspA) superfamily encompasses a conserved group of proteins that are found in bacteria, archaea, and eukaryotes. Escherichia coli harbors six usp genes--uspA, -C, -D, -E, -F, and -G--the expression of which is triggered by a large variety of environmental insults. The uspA gene is important for survival during cellular growth arrest, but the exact physiological role of the Usp proteins is not known. In this work we have performed phenotypic characterization of mutants with deletions of the six different usp genes. We report on hitherto unknown functions of these genes linked to motility, adhesion, and oxidative stress resistance, and we show that usp functions are both overlapping and distinct. Both UspA and UspD are required in the defense against superoxide-generating agents, and UspD appears also important in controlling intracellular levels of iron. In contrast, UspC is not involved in stress resistance or iron metabolism but is essential, like UspE, for cellular motility. Electron microscopy demonstrates that uspC and uspE mutants are devoid of flagella. In addition, the function of the uspC and uspE genes is linked to cell adhesion, measured as FimH-mediated agglutination of yeast cells. While the UspC and UspE proteins promote motility at the expense of adhesion, the UspF and UspG proteins exhibit the exact opposite effects. We suggest that the Usp proteins have evolved different physiological functions that reprogram the cell towards defense and escape during cellular stress.  相似文献   
5.
Global wildfire frequency and extent are expected to increase under projected climate change in the twenty-first century, yet little is known about how human activities might affect this trend. In central Mongolia, there has been a 2.5°C rise in spring and summer temperatures during the last 40 years and a decrease in moisture availability during the latter half of the twentieth century. Concurrently, Mongolia has experienced multiple shifts in socioeconomic systems during the twentieth century, most notably the establishment of a Soviet-backed communist economy in the 1920s and a rapid transition to privatization in the 1990s. Observed records of fire in the late twentieth century suggested that fire activity had increased, but no long-term data existed to place these trends in a historical context. Our objective was to identify spatial and temporal patterns in fire occurrence in the forest-steppe ecotone of the Tuul River watershed in the context of changing climatic and social conditions since 1875. We used fire-scarred trees to reconstruct past fire occurrence during the period 1875–2009. Our results indicate a significant association between human activity and fire occurrence independent of climatic variables. The greatest evidence for an anthropogenic fire regime exists following the transition to a free market economy during the early 1990s when land-use intensification near the capital city of Ulaanbaatar resulted in fire exclusion. We emphasize the importance of including socio-political variables in global models of wildfire potential, particularly where fuels limit fire activity.  相似文献   
6.
Landscape and Ecological Engineering - We aimed to test the hypothesis that large-scale forest fire followed by illegal logging inhibits the regeneration of boreal forests in Mongolia. For this...  相似文献   
7.
Altered mitochondrial functionality can extend organism life span, but the underlying mechanisms are obscure. Here we report that inactivating SOV1, a member of the yeast mitochondrial translation control (MTC) module, causes a robust Sir2-dependent extension of replicative life span in the absence of respiration and without affecting oxidative damage. We found that SOV1 interacts genetically with the cAMP-PKA pathway and the chromatin remodeling apparatus. Consistently, Sov1p-deficient cells displayed reduced cAMP-PKA signaling and an elevated, Sir2p-dependent, genomic silencing. Both increased silencing and life span extension in sov1Δ cells require the PKA/Msn2/4p target Pnc1p, which scavenges nicotinamide, a Sir2p inhibitor. Inactivating other members of the MTC module also resulted in Sir2p-dependent life span extension. The data demonstrate that the nuclear silencing apparatus senses and responds to the absence of MTC proteins and that this response converges with a pathway for life span extension elicited by reducing TOR signaling.  相似文献   
8.
The bacterial universal stress protein: function and regulation   总被引:3,自引:0,他引:3  
The universal stress protein A (UspA) superfamily encompasses an ancient and conserved group of proteins that are found in bacteria, Archea, fungi, flies and plants. The Escherichia coli UspA is produced in response to a large number of different environmental onslaughts and UspA is one of the most abundant proteins in growth-arrested cells. Although insights into the regulation of the E. coli uspA gene have been gained, the exact roles of the Usp proteins and Usp domains remain enigmatic; they appear, in some cases, to be linked to resistance to DNA-damaging agents and to respiratory uncouplers.  相似文献   
9.
10.
Universal stress proteins (Usps) are found in all kingdoms of life and can be divided into four classes by phylogenic analysis. According to available structures, Usps exist as homodimers, and genetic studies show that their cellular assignments are extensive, including functions relating to stress resistance, carbon metabolism, cellular adhesion, motility, and bacterial virulence. We approached the question of how Usps can achieve such a variety of functions in a cell by using a new procedure for statistical analysis of multiple sequence alignments, based on physicochemically related values for each amino acid residue of Usp dimer interfaces. The results predicted that Usp proteins within a class may, in addition to forming homodimers, be able to form heterodimers. Using Escherichia coli Usps as model proteins, we confirmed the existence of such interactions. We especially focused on class I UspA and UspC and demonstrated that they are able to form homo- and heterodimers in vitro and in vivo. We suggest that this ability to form both homo- and heterodimers may allow for an expansion of the functional repertoire of Usps and explains why organisms usually contain multiple usp paralogues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号