首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  2016年   1篇
  2015年   7篇
  2012年   3篇
  2009年   1篇
  1982年   1篇
  1956年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
Evolutionary ecological theory predicts that among insect herbivores ‘mothers know best’ when selecting a plant to deposit their eggs. Host‐plant selection is usually studied for the adult stage exclusively, although mothers have not always been reported to know best. Here, we investigate the host‐plant selection behaviour of caterpillars, which are considered to be completely dependent on their mothers’ choices. We use a system that offers a biologically relevant framework to compare the degree of participation of adults and juveniles in host‐plant selection. Our results show that neonate Pieris brassicae caterpillars can actively discriminate between conspecific Brassica oleracea plants with or without aphid (Brevicoryne brassicae) infestation. The caterpillars prefer aphid‐infested plants on which their performance is significantly better, while their mothers, the female butterflies, did not discriminate. We compared caterpillar preferences of individuals released individually or in groups, because P. brassicae is a gregarious species. We found that the strength of the preference for aphid‐infested plants was not affected by the degree of grouping. Caterpillar choices were made before contact with the plants, indicating that plant odours were used for orientation. However, the composition of the volatile blends emitted by plants with and without aphids did not show strong differences. Similarly, like with aphid‐infested plants, plants treated with salicylic acid (SA) were also preferred by neonates over untreated control, indicating that the infestation by aphids may have rendered the plants more attractive to the neonates via changes related to interference with JA‐signaling. The main parasitoid of the caterpillars did not discriminate between plants with hosts in the presence or absence of aphids, showing that top–down forces do not influence the relative suitability of the different food sources for the caterpillars. These data are discussed in the context of mothers and offspring having both important, but different roles in the process of host‐plant selection. Butterflies may select the plant species patch, while their offspring adjust and/or update the choices of their mothers at the local scale, within the micro‐habitat selected by the adult.  相似文献   
3.
THE BREEDING SYSTEM IN PRIMULA VERIS L.   总被引:4,自引:2,他引:2  
  相似文献   
4.
Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.  相似文献   
5.
6.
The use of odor baits for surveillance and control of malaria mosquitoes requires robust dispensing tools. In this study, the residual activity of a synthetic mosquito attractant blend dispensed from nylon or low density polyethylene (LDPE) sachets was evaluated at weekly intervals for one year without re-impregnation. The potential role of bacteria in modulating the attraction of mosquitoes to odor-treated nylon that had been used repeatedly over the one year study period, without re-impregnation, was also investigated. Significantly higher proportions of female Anopheles gambiae sensu stricto mosquitoes were consistently attracted to treated nylon strips than the other treatments, up to one year post-treatment. Additional volatile organic compounds and various bacterial populations were found on the treated nylon strips after one year of repeated use. The most abundant bacteria were Bacillus thuringiensis and Acinetobacter baumannii. Autoclaving of treated nylon strips prior to exposure had no effect on trap collections of laboratory-reared female An. Gambiae (P = 0.17) or wild female An. Gambiae sensu lato (P = 0.26) and Mansonia spp. (P = 0.17) mosquitoes. Trap catches of wild female An. Funestus (P < 0.001) and other anophelines (P < 0.007) were higher when treated strips had been autoclaved prior to deployment as opposed to when the treated nylon strips were not autoclaved. By contrast, wild female Culex mosquitoes were more strongly attracted to non-autoclaved compared to autoclaved treated nylon strips (P < 0.042). This study demonstrates the feasibility of using odor baits for sampling and surveillance of malaria as well as other mosquito vectors over prolonged periods of time. Preliminary evidence points towards the potential role of bacteria in sustaining prolonged use of nylon material for dispensing synthetic attractant odorants for host-seeking malaria and other mosquito vectors but further investigations are required.  相似文献   
7.
8.
9.
Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号