首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2018年   1篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  1957年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.

Background

Cytokine-induced killer cells (CIKs) are an advanced therapeutic medicinal product (ATMP) that has shown therapeutic activity in clinical trials but needs optimization. We developed a novel strategy using CIKs from banked cryopreserved cord blood units (CBUs) combined with bispecific antibody (BsAb) blinatumomab to treat CD19+ malignancies.

Methods

CB-CIKs were expanded in vitro and fully characterized in comparison with peripheral blood (PB)–derived CIKs.

Results

CB-CIKs, like PB-CIKs, were mostly CD3+ T cells with mean 45% CD3+CD56+ and expressing mostly TCR(T cell receptor)αβ with a TH1 phenotype. CB-CIK cultures had, however, a larger proportion of CD4+ cells, mostly CD56?, as well as a greater proportion of naïve CCR7+CD45RA+ and a lower percentage of effector memory cells, compared with PB-CIKs. CB-CIKs were very similar to PB-CIKs in their expression of a large panel of co-stimulatory and inhibitory/exhaustion markers, except for higher CD28 expression among CD8+ cells. Like PB-CIKs, CB-CIKs were highly cytotoxic in vitro against natural killer (NK) cell targets and efficiently lysed CD19+ tumor cells in the presence of blinatumomab, with 30–60% lysis of target cells at very low effector:target ratios. Finally, both CB-CIKs and PB-CIKs, combined with blinatumomab, showed significant therapeutic activity in an aggressive PDX Ph+ CD19+ acute lymphoblastic leukemia model in NOD-SCID mice, without sign of toxicity or graft-versus-host disease. The improved expansion protocol was finally validated in good manufacturing practice conditions, showing reproducible expansion of CIKs from cryopreserved cord blood units with a median of 28.8?×?106 CIK/kg.

Discussion

We conclude that CB-CIKs, combined with bispecific T-cell–engaging antibodies, offer a novel, effective treatment strategy for leukemia.  相似文献   
2.
3.
In the science-fiction thriller film Minority Report, a specialized police department called “PreCrime” apprehends criminals identified in advance based on foreknowledge provided by 3 genetically altered humans called “PreCogs”. We propose that Yamanaka stem cell technology can be similarly used to (epi)genetically reprogram tumor cells obtained directly from cancer patients and create self-evolving personalized translational platforms to foresee the evolutionary trajectory of individual tumors. This strategy yields a large stem cell population and captures the cancer genome of an affected individual, i.e., the PreCog-induced pluripotent stem (iPS) cancer cells, which are immediately available for experimental manipulation, including pharmacological screening for personalized “stemotoxic” cancer drugs. The PreCog-iPS cancer cells will re-differentiate upon orthotopic injection into the corresponding target tissues of immunodeficient mice (i.e., the PreCrime-iPS mouse avatars), and this in vivo model will run through specific cancer stages to directly explore their biological properties for drug screening, diagnosis, and personalized treatment in individual patients. The PreCog/PreCrime-iPS approach can perform sets of comparisons to directly observe changes in the cancer-iPS cell line vs. a normal iPS cell line derived from the same human genetic background. Genome editing of PreCog-iPS cells could create translational platforms to directly investigate the link between genomic expression changes and cellular malignization that is largely free from genetic and epigenetic noise and provide proof-of-principle evidence for cutting-edge “chromosome therapies” aimed against cancer aneuploidy. We might infer the epigenetic marks that correct the tumorigenic nature of the reprogrammed cancer cell population and normalize the malignant phenotype in vivo. Genetically engineered models of conditionally reprogrammable mice to transiently express the Yamanaka stemness factors following the activation of phenotypic copies of specific cancer diseases might crucially evaluate a “reprogramming cure” for cancer. A new era of xenopatients 2.0 generated via nuclear reprogramming of the epigenetic landscapes of patient-derived cancer genomes might revolutionize the current personalized translational platforms in cancer research.  相似文献   
4.
In ant–plant mutualist systems, ants patrol their host plants and search for herbivores. Such patrolling can be inefficient, however, because herbivore activity is spatio-temporally unpredictable. It has been proposed that rapid and efficient systems of communication between ants and plants, such as volatile compounds released following herbivory, both elicit defensive responses and direct workers to sites of herbivore activity. We performed bioassays in which we challenged colonies of two Amazonian plant-ants, Azteca sp. and Pheidole minutula , with extracts of leaf tissue from (1) their respective host-plant species ( Tococa bullifera and Maieta guianensis , both Melastomataceae), (2) sympatric ant-plants from the Melastomataceae, and (3) two sympatric but non-myrmecophytic Melastomataceae. We found that ants of both species responded dramatically to host-plant extracts, and that these responses are greater than those to sympatric myrmecophytes. Azteca sp. also responded to non-myrmecophytes with an intensity similar to that of sympatric ant-plants. By contrast, the response of P. minutula to any non-myrmecophytic extracts was limited. These differences may be driven in part by interspecific differences in nesting behaviour; although P. minutula only nests in host plants, Azteca sp. will establish carton satellite nests on nearby plants. We hypothesize that Azteca sp. must therefore recognize and defend a wider array of species than P. minutula .  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 241–249.  相似文献   
5.
Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K‐deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates.  相似文献   
6.
Phenotypic plasticity can improve fitness in unstable environments and can be expressed in many traits, such as life history attributes, growth and behavioural features. Microhabitat choice can have important consequences for development and survival of aquatic organisms and is expected to vary in response to stimuli, such as predation risk, food availability and temperature. At seasonal sites, microhabitat availability and associated benefits may change from season to season, which might lead to altered patterns of microhabitat use by tadpoles. We investigated this hypothesis in 17 streams from two localities in south‐eastern Brazil. We tested whether water level drops significantly during the dry season, whether lower water level results in altered microhabitat availability and whether predation risk changes between seasons, based on predator density. We then tested whether tadpoles change their pattern of microhabitat use, their spatial niche breadth (given by diversity of used microhabitats) and spatial niche overlap (in the case of co‐occurring species). We were able to include in our analyses tadpoles of four species of Hylidae, that occurred throughout both seasons. Stream depth decreased in the dry season, but microhabitat availability remained relatively stable in many streams, and predator density did not change significantly. Tadpoles of three out of the four species studied were more abundant during the dry season, which may be an adaptation to adjust time of metamorphosis to the rainy season. Tadpoles changed their patterns of microhabitat use between seasons, although the potential causing factors investigated did not seem to be responsible. Tadpole plasticity in microhabitat use may indicate the existence of selective pressures that vary through time and space and are still not well understood.  相似文献   
7.
8.
Biofuels are an important alternative, renewable source of energy in the face of the ongoing depletion of fossil fuels. Cheese whey is a dairy industry waste characterized by high lactose concentration, which represents a significant environmental problem. Bio-ethanol production by cheese whey could be an effective nonvegetable source for renewable energy production. Here, we report the isolation of a mixed microbial population, able to produce ethanol as main fermentation product from fermenting whey. The microbial consortium has been used to perform a batch fermentation of crude whey in both anoxic and hypoxic conditions. Maximum ethanol concentrations achieved in this study was obtained using the mixed culture in hypoxic conditions, grown at pH 4 and 30°C, with ethanol production yield of 60 g/L. Our research has pointed out an alternative way to both dispose and valorize cheese whey, a dairy by-product that could cause water pollution and harm to the environment if not properly treated.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号