全文获取类型
收费全文 | 80篇 |
免费 | 10篇 |
专业分类
90篇 |
出版年
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 3篇 |
2014年 | 6篇 |
2013年 | 3篇 |
2012年 | 2篇 |
2011年 | 3篇 |
2010年 | 5篇 |
2009年 | 5篇 |
2008年 | 5篇 |
2007年 | 2篇 |
2006年 | 3篇 |
2005年 | 2篇 |
2004年 | 1篇 |
2002年 | 1篇 |
2001年 | 1篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1959年 | 3篇 |
1958年 | 3篇 |
1957年 | 2篇 |
1956年 | 2篇 |
1955年 | 2篇 |
1954年 | 1篇 |
1953年 | 3篇 |
1952年 | 3篇 |
1951年 | 1篇 |
1950年 | 2篇 |
1949年 | 2篇 |
1948年 | 1篇 |
1941年 | 1篇 |
1939年 | 1篇 |
1938年 | 1篇 |
1936年 | 1篇 |
1933年 | 1篇 |
排序方式: 共有90条查询结果,搜索用时 0 毫秒
1.
2.
Herbivory-induced signalling in plants: perception and action 总被引:1,自引:0,他引:1
Plants and herbivores have been interacting for millions of years. Over time, plants have evolved mechanisms to defend against herbivore attacks. Herbivore-challenged plants reconfigure their metabolism to produce compounds that are toxic, repellant or anti-digestive for the herbivores. Some compounds are volatile signals that attract the predators of herbivores. All these responses are tightly regulated by a signalling network triggered by the plant's perception machinery. Several compounds that specifically elicit herbivory-induced responses in plants have been isolated from herbivore oral secretions and oviposition fluids. Elicitor perception is rapidly followed by cell membrane depolarization, calcium influx and mitogen-activated protein kinase (MAPK) activation; plants also elevate the concentrations of reactive oxygen and nitrogen species, and modulate phytohormone levels accordingly. In addition to these reactions in the herbivore-attacked regions of a leaf, defence responses are also mounted in unattacked parts of the attacked leaf and as well in unattacked leaves. In this review, we summarize recent progress in understanding how plants recognize herbivory, the involvement of several important signalling pathways that mediate the responses to herbivore attack and the signals that transduce local into systemic responses. 相似文献
3.
4.
Molecular evolution of olfactomedin 总被引:2,自引:0,他引:2
Olfactomedin is a secreted polymeric glycoprotein of unknown function,originally discovered at the mucociliary surface of the amphibian olfactoryneuroepithelium and subsequently found throughout the mammalian brain. As afirst step toward elucidating the function of olfactomedin, itsphylogenetic history was examined to identify conserved structural motifs.Such conserved motifs may have functional significance and provide targetsfor future mutagenesis studies aimed at establishing the function of thisprotein. Previous studies revealed 33% amino acid sequence identity betweenrat and frog olfactomedins in their carboxyl terminal segments. Furtheranalysis, however, reveals more extensive homologies throughout themolecule. Despite significant sequence divergence, cysteines essential forhomopolymer formation such as the CXC motif near the amino terminus areconserved, as is the characteristic glycosylation pattern, suggesting thatthese posttranslational modifications are essential for function.Furthermore, evolutionary analysis of a region of 53 amino acids of fish,frog, rat, mouse, and human olfactomedins indicates that an ancestralolfactomedin gene arose before the evolution of terrestrial vertebrates andevolved independently in teleost, amphibian, and mammalian lineages.Indeed, a distant olfactomedin homolog was identified in Caenorhabditiselegans. Although the amino acid sequence of this invertebrate protein islonger and highly divergent compared with its vertebrate homologs, theprotein from C. elegans shows remarkable similarities in terms of conservedmotifs and posttranslational modification sites. Six universally conservedmotifs were identified, and five of these are clustered in the carboxylterminal half of the protein. Sequence comparisons indicate that evolutionof the N-terminal half of the molecule involved extensive insertions anddeletions; the C-terminal segment evolved mostly through point mutations,at least during vertebrate evolution. The widespread occurrence ofolfactomedin among vertebrates and invertebrates underscores the notionthat this protein has a function of universal importance. Furthermore,extensive modification of its N-terminal half and the acquisition of aC-terminal SDEL endoplasmic-reticulum- targeting sequence may have enabledolfactomedin to adopt new functions in the mammalian central nervoussystem. 相似文献
5.
6.
7.
8.
Kiessoun Konaté Jacques Fran?ois Mavoungou Alexis Nicaise Lepengué Ra?ssa RR Aworet-Samseny Adama Hilou Alain Souza Mamoudou H Dicko Bertrand M’Batchi 《Annals of clinical microbiology and antimicrobials》2012,11(1):1-12
Background
The present study reports the antibacterial capacity of alkaloid compounds in combination with Methicillin and Ampicillin-resistants bacteria isolated from clinical samples. The resistance of different bacteria strains to the current antibacterial agents, their toxicity and the cost of the treatment have led to the development of natural products against the bacteria resistant infections when applied in combination with conventional antimicrobial drugs.Method
The antibacterial assays in this study were performed by using inhibition zone diameters, MIC, MBC methods, the time-kill assay and the Fractional Inhibitory Concentration Index (FICI) determination. On the whole, fifteen Gram-positive bacterial strains (MRSA/ARSA) were used. Negative control was prepared using discs impregnated with 10 % DMSO in water and commercially available Methicillin and Ampicillin from Alkom Laboratories LTD were used as positive reference standards for all bacterial strains.Results
We noticed that the highest activities were founded with the combination of alkaloid compounds and conventional antibiotics against all bacteria strains. Then, results showed that after 7 h exposition there was no viable microorganism in the initial inoculums.Conclusion
The results of this study showed that alkaloid compounds in combination with conventional antibiotics (Methicillin, Ampicillin) exhibited antimicrobial effects against microorganisms tested. These results validate the ethno-botanical use of Cienfuegosia digitata Cav. (Malvaceae) in Burkina Faso. Moreover, this study demonstrates the potential of this herbaceous as a source of antibacterial agent that could be effectively used for future health care purposes. 相似文献9.
10.
William A Cafruny Richard G Duman Grace HW Wong Suleman Said Pam Ward-Demo Raymond RR Rowland Eric A Nelson 《Virology journal》2006,3(1):1-17