首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   5篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   2篇
  2002年   6篇
  2001年   3篇
  1997年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   
2.
Biological Trace Element Research - Metabolic diseases or injuries damage bone structure and self-renewal capacity. Trace elements and hydroxyapatite crystals are important in the development of...  相似文献   
3.
Glioblastoma (GBM) is the most common and aggressive intraparenchymal primary brain tumor in adults. The principal reasons for the poor outcomes of GBM are the high rates of recurrence and resistance to chemotherapy. The aim of this study was to determine the role of tailored cellular therapy for GBM with a poor prognosis and compare the activity of dendritic cells (DCs) that have encountered GBM cells. Detecting the correlations between methylation and expression of MGMT and PTEN genes and GBM cancer stem cells (CSCs) markers after co-cultures with a mononuclear cell cocktail are also aims for this study. Allogenic umbilical cord blood (UCB)-derived DCs were labeled with the CD11a and CD123 for immature DCs, and CD80 and CD11c for mature DCs. CD34, CD45, and CD56 cells were isolated from allogenic UCB for using in DCs maturation. GBM CSCs were detected with CD133/1 and CD111 antibodies after co-culture studies. DC activation was carried out via GBM cells including CD133 and CD111 cells and a mononuclear cells cocktail including CD34, CD45, and CD56 natural killer cells. Real-time PCR was performed to detect the expression and promoter methylation status of PTEN and MGMT genes. The expression of CSCs markers was found in all GBM cases, and a statistically significant correlation was found among them after co-culture studies. The most pronounced affinity of DCs to GBM cells was observed at dilutions between 1/4 and 1/256 in co-cultures. There was a statistically significant correlation between cellularity and granularity ratios for CD123 and CD11c. PTEN and MGMT gene expression and methylation values were evaluated with respect to CSCs expression and no statistical significance was found. Activation of DCs might associate with CSCs and the mononuclear cells cocktail including CD34, CD45, and CD56 cells which were obtained from allogenic UCB.  相似文献   
4.
5.
BackgroundSeveral factors may influence newborn thyroid-stimulating hormone (TSH) concentrations and cause subclinical hypothyroidism in a newborn. A sufficient level of leptin signalling is needed for the normal production of TSH and thyroid hormones by the thyroid gland. Our study aimed to investigate the correlation between maternal serum leptin concentration during the third trimester of pregnancy and newborn screening-TSH levels.MethodsThis prospective cross-sectional study was conducted in obstetrics and gynaecology clinics of a state hospital between June and August 2013. Maternal venous blood samples were collected from 270 healthy pregnant women in the third trimester just before delivery. Measurements of maternal fT3, fT4, TSH, anti-thyroid peroxidase (TPO), and anti-thyroglobulin (anti-Tg) antibodies from serum samples were performed by chemiluminescence immunoassay. Maternal serum leptin levels were determined by ELISA. Dried capillary blood spots were used to measure newborn TSH levels.ResultsSubjects were divided into two groups according to the neonatal TSH levels using a cut-point of 5.5 mIU/L. Median maternal serum leptin levels were significantly higher in newborns whose TSH levels were higher than >5.5 mIU/L [13.2 μg/L (1.3 - 46.5) vs 19.7 μg/L (2.4 - 48.5), p<0.05]. Serum leptin levels showed a negative correlation with maternal fT4 (r=0.32, p<0.05), fT3 (r=0.23, p<0.05), and a positive correlation with BMI (r=0.30, p<0.05).ConclusionsOur results suggest that high leptin levels in the third trimester of pregnancy influence maternal thyroid functions and might cause an increase in newborn TSH levels. Detection of high maternal serum leptin levels may be a reason for subclinical hypothyroidism.  相似文献   
6.
BackgroundIron deficiency anemia (IDA) is the most common type of anemia worldwide and has many adverse effects on life quality. This meta-analysis study aims to show that reticulocyte hemoglobin content (CHr) is more effective than routinely used parameters in the diagnosis of IDA.MethodsComprehensive and systematic research was done using international databases including PubMed, Web of Science, Cochrane Library, Science Direct, and Google Scholar, which contain all articles published on IDA until December 29, 2020. Seventeen articles were included in the meta-analysis.ResultsThe analyses found the Cohen''s deffect size (Standardized Mean Difference) values of the parameters. Accordingly, CHr is 2.84 (95% CI 2.36 to 3.31), mean corpus volume (MCV) is 2.46 (95% CI 1.97 to 2.95), ferritin is 2.37 (95% CI 1.63 to 3.11), and transferrin saturation (TSAT) is 3.76 (95% CI 2.14 to 5.38). To diagnose IDA, the sensitivity value of the CHr concentration was found as 83.5% (95% CI 76.1 to 89.8), specificity value to be 91.8% (95% CI 85.5 to 96.4), and mean cut-off value as 28.2 pg.ConclusionsThe results of our study reveal the findings that CHr is a better biomarker than MCV and ferritin used in determining IDA, and its efficacy is lower than TSAT. It is very important to use it routinely for the pre-diagnosis of IDA, which is very important for public health. The groups in the study are heterogeneous but contain bias. Therefore, meta-analyses of studies with less heterogeneity of CHr are needed.  相似文献   
7.
Iloprost, a stable analogue of prostacyclin, was used to reverse the early period of vasoconstriction provoked by Endothelin-1 by administering into the rabbit basilar artery. We observed if this produced an effect on the central nervous system parenchyma mediated by free radical system. The red neurons were counted in brain stem sections stained with haematoxylin and eosin, while superoxide dismutase and malondialdehyde levels were measured in brain stem tissue samples as a marker of reactive oxygen metabolites; both 30 and 90 min after administration of either Endothelin-1 (0.25 ng) alone or Endothelin-1 followed by Iloprost (0.5 microg/kg) into the basilar artery. Endothelin-1 significantly increased the number of red neurons, while Iloprost significantly reduced them after 30 and 90 min. However, regarding the reactive oxygen metabolites; a similar reversing effect of Iloprost was not observed although superoxide dismutase levels were significantly decreased after Endothelin-1 infusion.  相似文献   
8.
9.
Several recent studies have revealed a wide role for nitric oxide (NO) in bone metabolism. Low doses of NO cause bone resorption, but higher doses of NO inhibit bone resorbing activity. Cytokines are potent stimulators of NO production. NO is a very short-lived molecules. It exists for only 6-10 s only before it is converted by oxygen and water into the end-products nitrates and nitrites. Osteoporosis is a metabolic bone disease, characterized by a decreased amount of bone and increased susceptibility to fracture. NO may be involved as a mediator of bone disease such as post-menopausal osteoporosis. Calcitonin is a peptide hormone that inhibits bone resorption. The function of calcitonin in some cells is often unclear. In this study 30 post-menopausal osteoporotic women of ages ranging between 55 and 59 years without systemic diseases and free of any drug therapy were included. Twenty of them, randomly chosen, were treated with calcium (500 mg day(-1))+calcitonin (nasal spray 100 U day(-1)) and the other 10 women (control group) were treated with calcium only. This treatment was applied for 6 months and NO values were measured in each of the two groups before and after treatment. Our findings demonstrate that NO regulates osteoclastic bone resorption activity in association with calcitonin.  相似文献   
10.
Transthyretin (TTR) is a visceral protein, which facilitates the transport of thyroid hormones in blood and cerebrospinal fluid. The homotetrameric structure of TTR enables the simultaneous binding of two thyroid hormones per molecule. Each TTR subunit provides a single cysteine residue (Cys10), which is frequently affected by oxidative post‐translational modifications. As Cys10 is part of the thyroid hormone‐binding channel within the TTR molecule, PTM of Cys10 may influence the binding of thyroid hormones. Therefore, we analysed the effects of Cys10 modification with sulphonic acid, cysteine, cysteinylglycine and glutathione on binding of triiodothyronine (T3) by molecular modelling. Furthermore, we determined the PTM pattern of TTR in serum of patients with thyroid disease by immunoprecipitation and mass spectrometry to evaluate this association in vivo. The in silico assays demonstrated that oxidative PTM of TTR resulted in substantial reorganization of the intramolecular interactions and also affected the binding of T3 in a chemotype‐ and site‐specific manner with S‐glutathionylation as the most potent modulator of T3 binding. These findings were supported by the in vivo results, which indicated thyroid function‐specific patterns of TTR with a substantial decrease in S‐sulphonated, S‐cysteinylglycinated and S‐glutathionylated TTR in hypothyroid patients. In conclusion, this study provides evidence that oxidative modifications of Cys10 seem to affect binding of T3 to TTR probably because of the introduction of a sterical hindrance and induction of conformational changes. As oxidative modifications can be dynamically regulated, this may represent a sensitive mechanism to adjust thyroid hormone availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号