全文获取类型
收费全文 | 351篇 |
免费 | 3篇 |
专业分类
354篇 |
出版年
2024年 | 2篇 |
2023年 | 3篇 |
2022年 | 10篇 |
2021年 | 8篇 |
2020年 | 4篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 4篇 |
2016年 | 11篇 |
2015年 | 15篇 |
2014年 | 20篇 |
2013年 | 21篇 |
2012年 | 34篇 |
2011年 | 27篇 |
2010年 | 16篇 |
2009年 | 14篇 |
2008年 | 18篇 |
2007年 | 25篇 |
2006年 | 37篇 |
2005年 | 23篇 |
2004年 | 16篇 |
2003年 | 13篇 |
2002年 | 10篇 |
2001年 | 10篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
排序方式: 共有354条查询结果,搜索用时 15 毫秒
1.
Mass media content likely influences the decision of women to breastfeed their newborn children. Relatively few studies have empirically assessed such a hypothesis to date, however. Most work has tended to focus either on specific interventions or on broad general commentary about the role of media. In this study, we examined infant feeding advertisements in 87 issues of Parents' Magazine, a popular parenting magazine, from the years 1971 through 1999. We then used content analysis results to predict subsequent changes in levels of breastfeeding among U.S. women. When the frequency of hand feeding advertisements increased, the percentage change in breastfeeding rates reported the next year generally tended to decrease. These results underscore the need to acknowledge the potential role of popular media content in understanding breastfeeding patterns and public health trends. 相似文献
2.
Erkan Tuncay Yusuf Olgar Aysegul Durak Sinan Degirmenci Ceylan Verda Bitirim Belma Turan 《Journal of cellular physiology》2019,234(8):13370-13386
Role of β3-AR dysregulation, as either cardio-conserving or cardio-disrupting mediator, remains unknown yet. Therefore, we examined the molecular mechanism of β3-AR activation in depressed myocardial contractility using a specific agonist CL316243 or using β3-AR overexpressed cardiomyocytes. Since it has been previously shown a possible correlation between increased cellular free Zn2+ ([Zn2+]i) and depressed cardiac contractility, we first demonstrated a relation between β3-AR activation and increased [Zn2+]i, parallel to the significant depolarization in mitochondrial membrane potential in rat ventricular cardiomyocytes. Furthermore, the increased [Zn2+]i induced a significant increase in messenger RNA (mRNA) level of β3-AR in cardiomyocytes. Either β3-AR activation or its overexpression could increase cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels, in line with significant changes in nitric oxide (NO)-pathway, including increases in the ratios of pNOS3/NOS3 and pGSK-3β/GSK-3β, and PKG expression level in cardiomyocytes. Although β3-AR activation induced depression in both Na+- and Ca2+-currents, the prolonged action potential (AP) seems to be associated with a marked depression in K+-currents. The β3-AR activation caused a negative inotropic effect on the mechanical activity of the heart, through affecting the cellular Ca2+-handling, including its effect on Ca2+-leakage from sarcoplasmic reticulum (SR). Our cellular level data with β3-AR agonism were supported with the data on high [Zn2+]i and β3-AR protein-level in metabolic syndrome (MetS)-rat heart. Overall, our present data can emphasize the important deleterious effect of β3-AR activation in cardiac remodeling under pathological condition, at least, through a cross-link between β3-AR activation, NO-signaling, and [Zn2+]i pathways. Moreover, it is interesting to note that the recovery in ER-stress markers with β3-AR agonism in hyperglycemic cardiomyocytes is favored. Therefore, how long and to which level the β3-AR agonism would be friend or become foe remains to be mystery, yet. 相似文献
3.
doi: 10.1111/j.1741‐2358.2010.00381.x Effect of denture adhesive on the micro‐organisms in vivo Background: Denture adhesives increase the retention and stability of dentures in edentulous patients, especially in cases where salivary flow is impaired or in the management of traumatised oral mucosa. Objectives: The effect of a denture adhesive on the oral flora at different time intervals. Method: Thirty denture‐wearing patients were involved in this study. While half of the group received a denture adhesive, the other half did not. At baseline, 1 and 2 months after delivering the dentures, smear samples were obtained from the saliva, palate and the dentures. Candida albicans, Candida krusei, Candida glabrata, Candida spp., Staphylococcus aureus, Moraxella catarrhalis, α‐haemolytic streptococci, β‐haemolytic streptococci, Pneumococcus aureus, S. anginosus, S. intermedius, S. constellatus, S. sanguis, S. gordonii, S. mitis, S. mutans, S. salivarius, and yeasts were investigated. The data were statistically analysed using anova and repeated measures. Results: Most types of the micro‐organisms were not seen and could not be analysed statistically except α‐haemolytic streptococci and C. albicans. No statistically significant difference was found for α‐haemolytic streptococci and C. albicans in saliva, palate and the denture at all time intervals. Conclusions: Prolonged use of the denture adhesive tested up to 2 months did not yield to increase in micro‐organisms of the oral flora. 相似文献
4.
Kuo MT Wei Y Yang X Tatebe S Liu J Troncoso P Sahin A Ro JY Hamilton SR Savaraj N 《Biochemical and biophysical research communications》2006,340(3):887-893
A novel gene designated as fragile site-associated (FSA) gene was recently identified by positional cloning from the CHO 1q31 fragile site which plays an important role in regulating amplification of multidrug resistance (mdr1) gene in multidrug-resistant cells. FSA produces a message of approximately 16 kb which encodes an open-reading frame of 5005 amino acids. FSA shares sequence similarity with that in Caenorhabditis elegans lpd-3, a lipid storage gene. Using immunohistochemical staining and RNA in situ hybridization we report here that expression of FSA is associated with developmental programs of spermatogenesis and mammary gland in mice. Real-time RT-PCR results also support the upregulation of FSA expression in mammary gland development. Expression of FSA in many tissues including colon, skin, ovary, prostate, and bladder is mainly in the postmitotic, well-differentiated compartments. Moreover, levels of FSA expression are downregulated in tumors of these tissue origins. These results suggest that FSA also plays important roles in regulating mammalian epithelial growth and differentiation and tumor development. 相似文献
5.
Ashini Bolia Brian W. Woodrum Angelo Cereda Melissa A. Ruben Xu Wang S. Banu Ozkan Giovanna Ghirlanda 《Biophysical journal》2014
Cyanovirin-N (CVN), a cyanobacterial lectin, exemplifies a class of antiviral agents that inhibit HIV by binding to the highly glycosylated envelope protein gp120. Here, we investigate the energetics of glycan recognition using a computationally inexpensive flexible docking approach, backbone perturbation docking (BP-Dock). We benchmarked our method using two mutants of CVN: P51G-m4-CVN, which binds dimannose with high affinity through domain B, and CVN(mutDB), in which binding to domain B has been abolished through mutation of five polar residues to small nonpolar side chains. We investigated the energetic contribution of these polar residues along with the additional position 53 by docking dimannose to single-point CVN mutant models. Analysis of the docking simulations indicated that the E41A/G and T57A mutations led to a significant decrease in binding energy scores due to rearrangements of the hydrogen-bond network that reverberated throughout the binding cavity. N42A decreased the binding score to a level comparable to that of CVN(mutDB) by affecting the integrity of the local protein structure. In contrast, N53S resulted in a high binding energy score, similar to P51G-m4-CVN. Experimental characterization of the five mutants by NMR spectroscopy confirmed the binding affinity pattern predicted by BP-Dock. Despite their mostly conserved fold and stability, E41A, E41G, and T57A displayed dissociation constants in the millimolar range. N53S showed a binding constant in the low micromolar range, similar to that observed for P51G-m4-CVN. No binding was observed for N42A. Our results show that BP-Dock is a useful tool for rapidly screening the relative binding affinity pattern of in silico-designed mutants compared with wild-type, supporting its use to design novel mutants with enhanced binding properties. 相似文献
6.
7.
Recent studies have shown that the protein interface sites between individual monomeric units in biological assemblies are enriched in disease‐associated non‐synonymous single nucleotide variants (nsSNVs). To elucidate the mechanistic underpinning of this observation, we investigated the conformational dynamic properties of protein interface sites through a site‐specific structural dynamic flexibility metric (dfi) for 333 multimeric protein assemblies. dfi measures the dynamic resilience of a single residue to perturbations that occurred in the rest of the protein structure and identifies sites contributing the most to functionally critical dynamics. Analysis of dfi profiles of over a thousand positions harboring variation revealed that amino acid residues at interfaces have lower average dfi (31%) than those present at non‐interfaces (50%), which means that protein interfaces have less dynamic flexibility. Interestingly, interface sites with disease‐associated nsSNVs have significantly lower average dfi (23%) as compared to those of neutral nsSNVs (42%), which directly relates structural dynamics to functional importance. We found that less conserved interface positions show much lower dfi for disease nsSNVs as compared to neutral nsSNVs. In this case, dfi is better as compared to the accessible surface area metric, which is based on the static protein structure. Overall, our proteome‐wide conformational dynamic analysis indicates that certain interface sites play a critical role in functionally related dynamics (i.e., those with low dfi values), therefore mutations at those sites are more likely to be associated with disease. Proteins 2015; 83:428–435. © 2014 Wiley Periodicals, Inc. 相似文献
8.
Ertan Kucuksayan Aysegul Cort Mujgan Timur Evrim Ozdemir Suleyman Gultekin Yucel Prof. Dr. Tomris Ozben 《Journal of cellular biochemistry》2013,114(7):1685-1694
Antioxidants may prevent apoptosis of cancer cells via inhibiting reactive oxygen species (ROS). However, to date no study has been carried out to elucidate the effects of strong antioxidant N‐acetylcysteine (NAC) on Bleomycin induced apoptosis in human testicular cancer (NTERA‐2, NT2) cells. For this reason, we studied the effects of Bleomycin and NAC alone and in combination on apoptotic signaling pathways in NT2 cell line. We determined the cytotoxic effect of bleomycin on NT2 cells and measured apoptosis markers such as Caspase‐3, ‐8, ‐9 activities and Bcl‐2, Bax, Cyt‐c, Annexin V‐FTIC and PI levels in NT2 cells incubated with different agents for 24 h. Early apoptosis was determined using FACS assay. We found half of the lethal dose (LD50) of Bleomycin on NT2 cell viability as 400, 100, and 20 µg/ml after incubations for 24, 48, and 72 h, respectively. Incubation with bleomycin (LD50) and H2O2 for 24 h increased Caspase‐3, ‐8, ‐9 activities, Cyt‐c and Bax levels and decreased Bcl‐2 levels. The concurrent incubation of NT2 cells with bleomycin/H2O2 and NAC (5 mM) for 24 h abolished bleomycin/H2O2‐dependent increases in Caspase‐3, ‐8, ‐9 activities, Bax and Cyt‐c levels and bleomycin/H2O2‐dependent decrease in Bcl‐2 level. Our results indicate that bleomycin/H2O2 induce apoptosis in NT2 cells by activating mitochondrial pathway of apoptosis, while NAC diminishes bleomycin/H2O2 induced apoptosis. We conclude that NAC has antagonistic effects on Bleomycin‐induced apoptosis in NT2 cells and causes resistance to apoptosis which is not a desired effect in eliminating cancer cells. J. Cell. Biochem. 114: 1685–1694, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
9.
Selda Daler;Ozkan Kaya; 《Physiologia plantarum》2024,176(4):e14437
Drought represents the predominant and most critical abiotic stress challenge within the domain of viticulture, necessitating the identification and application of efficacious strategies to ameliorate its deleterious effects. In the contemporary realm of abiotic stress management, the deployment of α-lipoic acid (α-Lipo), known for its antioxidant capabilities, as an exogenous treatment has been investigated for mitigating various abiotic stresses in numerous plant species, yet a detailed exploration of its efficacy in alleviating drought stress in grapevines remains to be conclusively determined. This study aimed to elucidate the adaptive mechanisms against drought stress by examining the effects of different α-Lipo concentrations (0, 1, 25 and 50 μM) applied on the foliar under well-irrigated and drought conditions on American grapevine rootstocks ‘1103 P' (drought tolerant) and ‘3309 C' (drought sensitive). Our findings revealed that the efficacy of α-Lipo varied significantly depending on rootstock type and irrigation status. 1103 P rootstock treated with 1 μM α-Lipo under well-irrigated conditions showed greater positive effects on growth traits, photosynthetic and osmotic parameters. In contrast, in rootstock 3309 C under the same conditions, the highest effects were obtained at 25 and 50 μM α-Lipo concentrations. Under drought stress conditions, 50 μM α-Lipo treatment improved physiological parameters (chlorophyll content, proportional water coverage and stomatal conductance), proline content and antioxidant enzyme activities (SOD, CAT and APX), while reducing electrolyte leakage and MDA levels in both rootstocks, showing a strong potential to increase oxidative stress tolerance and sustain plant growth. Heatmap visualization analysis confirmed the data obtained from Principal Component Analysis (PCA) and revealed that 1103 P treated with 50 μM α-Lipo under drought stress conditions exhibited superior physiological performance compared to 3309 C under the same conditions. This indicates the importance of potential rootstock differences in stress adaptation or α-Lipo uptake efficiency. These findings suggest that α-Lipo holds promise as an eco-friendly, natural bio-stimulant for use in arid environments, contributing to the advancement of sustainable agricultural practices in the foreseeable future. 相似文献
10.
Substituted polyaniline/chitosan (sPANI/Ch) composites were chemically synthesized in H2SO4 and CH3COOH synthesis media. Structural and physical properties of the composites were characterized by using FTIR, SEM, TGA, UV–vis, XRD techniques, and conductivity measurements. The effect of synthesis media on morphology, thermal stability, conductivity, and crystalline properties was investigated. Chemical interactions between substituted polyanilines and chitosan were explained using FTIR spectra results. The different morphological surfaces were observed in SEM images of the composites. The size of the substituted polyaniline/chitosan (sPANI/Ch) composites was in nanoscale, and the composites synthesized in acetic acid media showed smaller structures than those of H2SO4 media and pure chitosan. It was interpreted from XRD results that the composites have amorphous structure and the PNEANI/Ch–CH3COOH composite has the highest crystallinity. 相似文献