首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   28篇
  2023年   6篇
  2022年   11篇
  2021年   16篇
  2020年   6篇
  2019年   11篇
  2018年   11篇
  2017年   8篇
  2016年   14篇
  2015年   14篇
  2014年   18篇
  2013年   22篇
  2012年   20篇
  2011年   21篇
  2010年   10篇
  2009年   6篇
  2008年   12篇
  2007年   22篇
  2006年   10篇
  2005年   10篇
  2004年   14篇
  2003年   7篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1995年   3篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1972年   2篇
排序方式: 共有310条查询结果,搜索用时 31 毫秒
1.
The structure of the hernoglobin α-chain of Rose-ringed Parakeet was determined by sequence degradations of the intact subunit, the CNBr fragments, and peptides obtained by digestion with staphylococcal Glu-specific protease and trypsin. Using this analysis, the complete α-chain structure of 21 avian species is known, permitting comparisons of the protein structure and of avian relationships. The structure exhibits differences from previously established avian α-chains at a total of 61 positions, five of which have residues unique to those of the parakeet (Ser-12, Gly-65, Ser-67, Ala-121, and Leu-134). The analysis defines hemoglobin variation within an additional avian order (Psittaciformes), demonstrates distant patterns for evaluation of relationships within other avian orders, and lends support to taxonomic conclusions from molecular data.  相似文献   
2.
Extrinsic absorption changes exhibited by potentiometric dyes have established the ionic basis of the action potential in synchronously activated populations of nerve terminals in the intact neurohypophyses of amphibia and mammals (Salzberg et al., 1983; Obaid et al., 1983, 1985b). Also, large and rapid changes in light scattering, measured as transparency, have been shown to follow membrane depolarization and to be intimately associated with the release of neuropeptides from the nerve terminals of the mouse neurohypophysis (Salzberg et al., 1985; Gainer et al., 1986). We report some experiments that help to define the pharmacological profile of the calcium channels present in intact neurosecretory terminals of vertebrates. For these, we used the peptide toxin omega-conotoxin GVIA (1-5 microM) and the dihydropyridine compounds Bay-K 8644 and nifedipine (2-5 microM), together with the after-hyperpolarization of the nerve terminal action potential. This undershoot depends upon the activation of a calcium-mediated potassium channel, as suggested by its sensitivity to [Ca++]o and charybdotoxin. omega-conotoxin GVIA substantially reduced the after-hyperpolarization in neurosecretory terminals of Xenopus, while neither of the dihydropyridine compounds had any effect under conditions that mimic natural stimulation. The effects of these calcium channel modifiers on the action potential recorded optically from the terminals of the Xenopus neurohypophysis were faithfully reflected in the behavior of the light-scattering changes observed in the neurohypophysis of the CD-1 mouse. omega-conotoxin GVIA (5 microM) reduced the size of the intrinsic optical signal associated with secretion by 50%, while the dihydropyridines had little effect. These observations suggest that the type of calcium channel that dominates the secretory behavior of intact vertebrate nerve terminals is at least partially blocked by omega-conotoxin GVIA and is insensitive, under normal conditions, to dihydropyridines.  相似文献   
3.
Ecosystem management in the face of global change requires understanding how co-occurring threats affect species and communities. Such an understanding allows for effective management strategies to be identified and implemented. An important component of this is differentiating between factors that are within (e.g. invasive predators) or outside (e.g. drought, large wildfires) of a local manager's control. In the global biodiversity hotspot of south-western Australia, small- and medium-sized mammal species are severely affected by anthropogenic threats and environmental disturbances, including invasive predators, fire, and declining rainfall. However, the relative importance of different drivers has not been quantified. We used data from a long-term monitoring program to fit Bayesian state-space models that estimated spatial and temporal changes in the relative abundance of four threatened mammal species: the woylie (Bettongia penicillata), chuditch (Dasyurus geoffroii), koomal (Trichosurus vulpecula) and quenda (Isoodon fusciventor). We then use Bayesian structural equation modelling to identify the direct and indirect drivers of population changes, and scenario analysis to forecast population responses to future environmental change. We found that habitat loss or conversion and reduced primary productivity (caused by rainfall declines) had greater effects on species' spatial and temporal population change than the range of fire and invasive predator (the red fox Vulpes vulpes) management actions observed in the study area. Scenario analysis revealed that a greater extent of severe fire and further rainfall declines predicted under climate change, operating in concert are likely to further reduce the abundance of these species, but may be mitigated partially by invasive predator control. Considering both historical and future drivers of population change is necessary to identify the factors that risk species recovery. Given that both anthropogenic pressures and environmental disturbances can undermine conservation efforts, managers must consider how the relative benefit of conservation actions will be shaped by ongoing global change.  相似文献   
4.
A small protein (Mr about 14 000) rich in cysteine/half-cystine has been isolated from camel milk by exclusion chromatography and reverse-phase high-performance liquid chromatography. The N-terminal amino acid sequence shows a region with several positional identities with and -caseins, which however lack cysteine residues; postions 16–20 are identical and involve the serine residues that have been found to be phosphorylated in -caseins.  相似文献   
5.
A pH-sensitive glass electrode was used in a temperature-controlled stopped-flow rapid reaction apparatus to determine rates of pH equilibration in red cell suspensions. The apparatus requires less than 2 ml of reactants. The electrode is insensitive to pressure and flow variations, and has a response time of < 5 ms. A 20% suspension of washed fresh human erythrocytes in saline at pH 7.7 containing NaHCO3 and extracellular carbonic anhydrase is mixed with an equal volume of 30 mM phosphate buffer at pH 6.7. Within a few milliseconds after mixing, extracellular HCO3- reacts with H+ to form CO2, which enters the red cells and rehydrates to form HCO3-, producing an electrochemical potential gradient for HCO3- from inside to outside the cells. HCO3- then leaves the cells in exchange for Cl-, and extracellular pH increases as the HCO3- flowing out of the cells reacts with H+. Flux of HCO3- is calculated from the dpH/dt during HCO3--Cl- exchange, and a velocity constant is computed from the flux and the calculated intracellular and extracellular [HCO3-]. The activation energy for the exchange process is 18.6 kcal/mol between 5°C and 17°C (transition temperature), and 11.4 kcal/mol from 17°C to 40°C. The activation energies and transition temperature are not significantly altered in the presence of a potent anion exchange inhibitor (SITS), although the fluxes are markedly decreased. These findings suggest that the rate-limiting step in red cell anion exchange changes at 17°C, either because of an alteration in the nature of the transport site or because of a transition in the physical state of membrane lipids affecting protein-lipid interactions.  相似文献   
6.

Cotton fibre quality is a multigenic trait. Genetic modification of different genes to achieve high quality fibre is difficult without knowing the mechanism lying behind genes interaction. Based on background knowledge an attempt to explore the potential structural interactions between Gossypium hirsutum Wlim5 domain1 and Gossypium hirsutum ACTIN-1 proteins was done in current study. Sequence features of the LIM domain1 of GhWlim5 protein were identified through multiple sequence alignment analysis, and a phylogenetic tree was built to identify evolutionary relationships between sequences. Conservation indicated the evolutionary importance of side chain residues and the presence of several aliphatic and/or bulky residues, which stabilize the protein core and facilitate packing of zinc fingers. The structures of GhWlim5 domain1 and GhACTIN-1 proteins were modelled and validated through computational methods. Validation of GhACTIN-1 and GhWlim5 domain1 structures indicated good structural quality with 99.7% and 100% of the favoured number of residues in allowed regions and Z-score, within the ranges of − 9.87 and − 4.17, respectively. Docking analysis indicated various possible modes of interaction between these two proteins with favourable binding affinities. Based on our strong binding interaction results between GhWlim5 domain1 and GhACTIN-1 proteins, we further investigated the role of over-expression of GhWlim5 by transformation in cotton plants under fibre specific promoter and transgenic plants displayed significant increases in fibre strength.

  相似文献   
7.
Russian Journal of Bioorganic Chemistry - In the present research work, a new series of N-(substituted-phenyl)-3-(4-phenyl-1-piperazinyl)propanamides were synthesized. The synthesis was initiated...  相似文献   
8.
Lepidoptera is the second most diverse insect order outnumbered only by the Coeleptera. Acetylcholinesterase (AChE) is the major target site for insecticides. Extensive use of insecticides, to inhibit the function of this enzyme, have resulted in the development of insecticide resistance. Complete knowledge of the target proteins is very important to know the cause of resistance. Computational annotation of insect acetylcholinesterase can be helpful for the characterization of this important protein. Acetylcholinesterase of fourteen lepidopteran insect pest species was annotated by using different bioinformatics tools. AChE in all the species was hydrophilic and thermostable. All the species showed lower values for instability index except L. orbonalis, S. exigua and T. absoluta. Highest percentage of Arg, Asp, Asn, Gln and Cys were recorded in P. rapae. High percentage of Cys and Gln might be reason for insecticide resistance development in P. rapae. Phylogenetic analysis revealed the AChE in T. absoluta, L. orbonalis and S. exigua are closely related and emerged from same primary branch. Three functional motifs were predicted in eleven species while only two were found in L. orbonalis, S. exigua and T. absoluta. AChE in eleven species followed secretory pathway and have signal peptides. No signal peptides were predicted for S. exigua, L. orbonalis and T. absoluta and follow non secretory pathway. Arginine methylation and cysteine palmotylation was found in all species except S. exigua, L. orbonalis and T. absoluta. Glycosylphosphatidylinositol (GPI) anchor was predicted in only nine species.  相似文献   
9.
Honey bee is vital for pollination and ecological services, boosting crops productivity in terms of quality and quantity and production of colony products: wax, royal jelly, bee venom, honey, pollen and propolis. Honey bees are most important plant pollinators and almost one third of diet depends on bee’s pollination, worth billions of dollars. Hence the role that honey bees have in environment and their economic importance in food production, their health is of dominant significance. Honey bees can be infected by various pathogens like: viruses, bacteria, fungi, or infested by parasitic mites. At least more than 20 viruses have been identified to infect honey bees worldwide, generally from Dicistroviridae as well as Iflaviridae families, like ABPV (Acute Bee Paralysis Virus), BQCV (Black Queen Cell Virus), KBV (Kashmir Bee Virus), SBV (Sacbrood Virus), CBPV (Chronic bee paralysis virus), SBPV (Slow Bee Paralysis Virus) along with IAPV (Israeli acute paralysis virus), and DWV (Deformed Wing Virus) are prominent and cause infections harmful for honey bee colonies health. This issue about honey bee viruses demonstrates remarkably how diverse this field is, and considerable work has to be done to get a comprehensive interpretation of the bee virology.  相似文献   
10.
Normal cells secrete heat shock protein 90 alpha (Hsp90α) in response to tissue injury. Tumor cells have managed to constitutively secrete Hsp90α during invasion and metastasis. The sole function of extracellular Hsp90α (eHsp90α) is to promote cell motility, a critical event for both wound healing and tumor progression. The mechanism of promotility action by eHsp90α, however, has remained elusive. A key issue is whether eHsp90α still acts as a chaperone outside the cells or is a new and bona fide signaling molecule. Here, we have provided evidence that eHsp90α utilizes a unique transmembrane signaling mechanism to promote cell motility and wound healing. First, subdomain II in the extracellular part of low-density lipoprotein receptor-related protein 1 (LRP-1) receives the eHsp90α signal. Then, the NPVY but not the NPTY motif in the cytoplasmic tail of LRP-1 connects eHsp90α signaling to serine 473 but not threonine 308 phosphorylation in Akt kinases. Individual knockdown of Akt1, Akt2, or Akt3 revealed the importance of Akt1 and Akt2 in eHsp90α-induced cell motility. Akt gene rescue experiments suggest that Akt1 and Akt2 work in concert, rather than independently, to mediate eHsp90α promotility signaling. Finally, Akt1 and Akt2 knockout mice showed impaired wound healing that cannot be corrected by topical application with the eHsp90α protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号