首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   34篇
  259篇
  2019年   2篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   12篇
  2010年   5篇
  2009年   7篇
  2008年   12篇
  2007年   5篇
  2006年   3篇
  2005年   6篇
  2004年   11篇
  2003年   5篇
  2002年   9篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   11篇
  1989年   2篇
  1988年   10篇
  1987年   9篇
  1986年   11篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1976年   2篇
  1974年   6篇
  1973年   7篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
  1960年   1篇
  1958年   1篇
  1952年   1篇
  1931年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
1.
2.
3.
The Saccharomyces cerevisiae prp mutants (prp2 through prp11) are known to be defective in pre-mRNA splicing at nonpermissive temperatures. We have sequenced the PRP4 gene and shown that it encodes a 52-kilodalton protein. We obtained PRP4 protein-specific antibodies and found that they inhibited in vitro pre-mRNA splicing, which confirms the essential role of PRP4 in splicing. Moreover, we found that PRP4 is required early in the spliceosome assembly pathway. Immunoprecipitation experiments with anti-PRP4 antibodies were used to demonstrate that PRP4 is a protein of the U4/U6 small nuclear ribonucleoprotein particle (snRNP). Furthermore, the U5 snRNP could be immunoprecipitated through snRNP-snRNP interactions in the large U4/U5/U6 complex.  相似文献   
4.
The yeast rna mutations (rna2 through rna10/11) are a set of temperature-sensitive mutations that result in the accumulation of pre-mRNAs at the nonpermissive temperature. Most of the yeast RNA gene products are involved in and essential for mRNA splicing in vitro, suggesting that they code for components of the splicing machinery. We tested this proposal by using an in vitro-synthesized RNA11 protein to complement the temperature-sensitive defect of the rna11 extract. During the in vitro complementation, the input RNA11 protein was associated with the 40S spliceosome and a 30S complex, suggesting that the RNA11 protein is indeed a component of the spliceosome. The formation of the RNA11-associated 30S complex did not require any exogenous RNA substrate, suggesting that this 30S particle is likely to be a preassembled complex involved in splicing. The RNA11-specific antibody inhibited the mRNA splicing in vitro, confirming the essential role of the RNA11 protein in mRNA splicing. Finally, using the anti-RNA11 antibody, we localized the RNA11 protein to the periphery of the yeast nucleus.  相似文献   
5.
Adequate salivary flow is important for patient comfort and maintenance of oral health. Xerostomia, or dry mouth, is a common clinical complaint. Masticatory and gustatory activity can stimulate salivary flow from functional salivary tissue and the use of sugarless mints and gums have been recommended to individuals who complain of xerostomia, but there are minimum clinical data. A clinical study assessing the effect on salivary flow rates and dental plaque pH of a sorbitol-sweetened chewing gum in subjects with the complaint of xerostomia was conducted. The chewing of the gum in this present study stimulated salivary flow in the subjects with xerostomia. Statistically significant stimulated whole mouth and parotid salivary flow rate increases were found when compared to unstimulated whole mouth and parotid salivary flow rates. Chewing of the sorbitol-sweetened gum also effectively reduced the drop in pH seen following the exposure to a fermentable carbohydrate. The findings of this present study indicate that chewing of a sorbitol-sweetened gum may be of benefit to patients with the complaint of xerostomia.  相似文献   
6.
7.
8.
From 114 accessions of wild emmer wheat from 11 sites in Israel, known for their allozymic variation (Nevo & al. 1982), individual genotypes were tested for resistance to one isolate of stripe rust both in the seedling stage in a growth chamber and in the adult plant stage in the field. The results indicate that resistance to stripe rust in seedlings and adults are significantly correlated (rs = 0.40, p < 0.001). Genetic polymorphisms of resistance to stripe rust vary geographically and are predictable by climatic, as well as allozymic markers. Three variable combinations of rainfall, evaporation, and temperature explain significantly 0.40–0.53 of the spatial variance in disease resistance to stripe rust, suggesting the operation of natural selection. Several allozyme genotypes are significantly associated with disease resistance. We conclude that natural populations of wild emmer wheat in Israel contain large amounts of disease resistance genes. These populations could be effectively screened and then utilized by the phytopathologist for identifying resistant genotypes and producing new resistant cultivars.Patterns of Resistance of Wild Wheat to Pathogens in Israel II.  相似文献   
9.
10.
C L Peebles  P Gegenheimer  J Abelson 《Cell》1983,32(2):525-536
Splicing of transfer RNA precursors containing intervening sequences proceeds in two distinct stages: endonucleolytic cleavage, followed by ligation. We have physically separated endonuclease and ligase activities from extracts of yeast cells, and we report properties of the partially purified endonuclease preparation. The endonuclease behaves as an integral membrane protein: it is purified from a membrane fraction from which it can be solubilized with nonionic detergents, and the activity of the endonuclease in the membrane fraction is stimulated by nonionic detergents. The endonuclease cleaves precursor tRNAs at two sites to excise the intervening sequence precisely. Both the extent and the accuracy of cleavage are enhanced by the presence of spermidine; the degree of stimulation varies with the pre-tRNA substrate. The cleavage products possess 5'-hydroxyl and 2',3'-cyclic phosphodiester termini. The cyclic phosphodiester termini can be opened to 2'-phosphates by a cyclic phosphodiesterase activity in the preparation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号