首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   27篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   7篇
  2016年   4篇
  2015年   8篇
  2014年   6篇
  2013年   7篇
  2012年   12篇
  2011年   10篇
  2010年   11篇
  2009年   13篇
  2008年   13篇
  2007年   9篇
  2006年   8篇
  2005年   5篇
  2004年   9篇
  2003年   2篇
  2002年   10篇
  2001年   5篇
  2000年   3篇
  1999年   12篇
  1998年   10篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   11篇
  1990年   6篇
  1989年   3篇
  1988年   2篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1964年   1篇
排序方式: 共有276条查询结果,搜索用时 31 毫秒
1.
2.
N-methyl-N'-nitro-N-nitrosoguanidine (nitrosoguanidine) and to a lesser extent UV radiation are very mutagenic for Gibberella microconidia. The recommended nitrosoguanidine doses lead to much higher frequencies of mutants than are found in other microorganisms. The frequency of mutants among the survivors increases linearly with the nitrosoguanidine dose (molar concentration X time); the absolute number of viable mutants in a given population reaches a maximum for a dose of ca. 0.7 M X s. The microconidia are uninucleate. The onset of germination brings about increased lethality of nitrosoguanidine, but it does not modify the action of UV radiation. Mycelia are more resistant than spores to both agents. Visible illumination effectively prevents lethality when given immediately after UV radiation. Auxotrophs and color mutants are very easily obtained. Pink adenine auxotrophs and several classes of color mutants are affected in the biosynthesis of the carotenoid pigment, neurosporaxanthin.  相似文献   
3.
In situ bag experiments were performed during summer and autumn in a small acidic lake, Tibbs Run Lake, West Virginia, USA. The objective was to evaluate phytoplankton responses to pH manipulation and nutrient addition. Increasing the pH from below 4.5 to over 6.3 resulted in great declines in phytoplankton biovolume. There was also a succession from dinoflagellates (Peridinium inconspicuum to small chlorophytes. The trend was more rapid where phosphorus (P) additions were made along with pH enhancement. During summer, P limitation was indicated, while nitrogen (N) appeared to limit production in autumn. In both seasons, nutrient additions greatly altered the phytoplankton composition in high pH treatments, but had no discernable effects at (the natural) low pH. A low pH, P addition treatment in autumn was the single exception. When N was subsequently added, phytoplankton composition changed dramatically, probably because the proceeding P additions caused severe secondary N-limitation. In general, however, the results supported the view that phytoplankton compositional responses to nutrient additions are suppressed in low pH, relative to high pH lake water.  相似文献   
4.
Geosmin may be the most familiar volatile compound, as it lends the earthy smell to soil. The compound is a member of the largest family of natural products, the terpenoids. The broad distribution of geosmin among bacteria in both terrestrial and aquatic environments suggests that this compound has an important ecological function, for example, as a signal (attractant or repellent) or as a protective specialized metabolite against biotic and abiotic stresses. While geosmin is part of our everyday life, scientists still do not understand the exact biological function of this omnipresent natural product. This minireview summarizes the current general observations regarding geosmin in prokaryotes and introduces new insights into its biosynthesis and regulation, as well as its biological roles in terrestrial and aquatic environments.  相似文献   
5.
6.
The rapid repolarization during phase 1 of the action potential of sheep cardiac purkinje fibers has been attributed to a time- and voltage-dependent chloride current. In part, this conclusion was based on experiments that showed a substantial slowing of phase 1 when larger, presumably impermeant, anions were substituted for chloride in tyrode’s solution. We have re- examined the electrical effects of low-chloride solutions. We recorded action potentials of sheep cardiac purkinje fibers in normal tyrode’s solution and in low-chloride solutions made by substituting sodium propionate, acetylglycinate, methylsulfate, or methanesulfonate for the NaCl of Tyrode’s solution. Total calcium was adjusted to keep calcium ion activity of test solutions equal to that of control solutions. Propionate gave qualitatively variable results in preliminary experiments; it was not tested further. Low-chloride solutions made with the other anions gave much more consistent results: phase 1 and the notch that often occurs between phases 1 and 2 were usually unaffected, and the action potential duration usually increased. The only apparent change in the resting potential was a transient 3-6 mV depolarization when low-chloride solution was first admitted to the chamber, and a symmetrical transient hyperpolarization when chloride was returned to normal. If a time- and voltage-dependent chloride current exists in sheep cardiac purkinje fibers, our results suggest that it plays little role in generating phase 1 of the action potential.  相似文献   
7.
8.
9.
Cultured bovine capillary endothelial (BCE) cells produce low levels of collagenolytic activity and significant amounts of the serine protease plasminogen activator (PA). When grown in the presence of nanomolar quantities of the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA), BCE cells produced 5-15 times more collagenolytic activity and 2-10 times more PA than untreated cells. The enhanced production of these enzymes was dependent on the dose of TPA used, with maximal response at 10(-7) to 10(-8) M. Phorbol didecanoate (PDD), an analog of TPA which is an active tumor promoter, also increased protease production. 4-O-methyl-TPA and 4α-PDD, two analogs of TPA which are inactive as tumor promoters, had no effect on protease production. Increased PA and collagenase activities were detected within 7.5 and 19 h, respectively, after the addition of TPA. The TPA-stimulated BCE cells synthesized a urokinase-type PA and a typical vertebrate collagenase. BCE cells were compared with bovine aortic endothelial (BAE) cells and bovine embryonic skin (BES) fibroblasts with respect to their production of protease in response to TPA. Under normal growth conditions, low levels of collagenolyic activity were detected in the culture fluids from BCE, BAE, and BES cells. BCE cells produced 5-13 times the basal levels of collagenolytic activity in response to TPA, whereas BAE cells and BES fibroblasts showed a minimal response to TPA. Both BCE and BAE cells exhibited relatively high basal levels of PA, the production of which was stimulated approximately threefold by the addition of TPA. The observation that BCE cells and not BAE cells produced high levels of both PA and collagenase activities in response to TPA demonstrates a significant difference between these two types of endothelial cells and suggests that the enhanced detectable activities are a property unique to bovine capillary and microvessel and endothelial cells.  相似文献   
10.
The relationship between intracellular lysosomal rupture and cell death caused by silica was studied in P388d(1) macrophages. After 3 h of exposure to 150 μg silica in medium containing 1.8 mM Ca(2+), 60 percent of the cells were unable to exclude trypan blue. In the absence of extracellular Ca(2+), however, all of the cells remained viable. Phagocytosis of silica particles occurred to the same extent in the presence or absence of Ca(2+). The percentage of P388D(1) cells killed by silica depended on the dose and the concentration of Ca(2+) in the medium. Intracellular lyosomal rupture after exposure to silica was measured by acridine orange fluorescence or histochemical assay of horseradish peroxidase. With either assay, 60 percent of the cells exposed to 150 μg silica for 3 h in the presence of Ca(2+) showed intracellular lysosomal rupture, was not associated with measureable degradation of total DNA, RNA, protein, or phospholipids or accelerated turnover of exogenous horseradish peroxidase. Pretreatment with promethazine (20 μg/ml) protected 80 percent of P388D(1) macrophages against silica toxicity although lysosomal rupture occurred in 60-70 percent of the cells. Intracellular lysosomal rupture was prevented in 80 percent of the cells by pretreatment with indomethacin (5 x 10(-5)M), yet 40-50 percent of the cells died after 3 h of exposure to 150 μg silica in 1.8 mM extracellular Ca(2+). The calcium ionophore A23187 also caused intracellular lysosomal rupture in 90-98 percent of the cells treated for 1 h in either the presence or absence of extracellular Ca(2+). With the addition of 1.8 mM Ca(2+), 80 percent of the cells was killed after 3 h, whereas all of the cells remained viable in the absence of Ca(2+). These experiments suggest that intracellular lysosomal rupture is not causally related to the cell death cause by silica or A23187. Cell death is dependent on extracellular Ca(2+) and may be mediated by an influx of these ions across the plasma membrane permeability barrier damaged directly by exposure to these toxins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号