首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   12篇
  215篇
  2022年   12篇
  2021年   7篇
  2020年   4篇
  2019年   27篇
  2018年   8篇
  2017年   7篇
  2016年   8篇
  2015年   18篇
  2014年   10篇
  2013年   16篇
  2012年   22篇
  2011年   13篇
  2010年   3篇
  2009年   5篇
  2008年   10篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1942年   1篇
排序方式: 共有215条查询结果,搜索用时 0 毫秒
1.
Interferon-γ (IFN-γ) is a product of activated T-lymphocytes, and tumor necrosis factor-α (TNF-α) is a product of both lymphocytes and macrophages. These cell types are often present at sites of tissue damage secondary to chronic infection or autoimmune disease. The purpose of this study was to characterize the effects of TNF-α and IFN-γ on a human submandibular gland epithelial cell line (HSG). IFN-γ caused a concentration-dependent decrease in HSG cell growth (~70% in 6 days). Conversely, TNF-α alone had little effect on the growth of these cells. When these cytokines were added in combination (20 units/ml TNF-α and 1,000 units/ml of IFN-γ), there was a synergistic antiproliferative effect; no apparent cell growth was observed. The cytokine-induced antiproliferative effect was reversible. After the apparent cessation of cell growth for 3–6 days, removal of the cytokines permitted complete growth recovery. Further, cells that recovered and exhibited growth patterns that were similar to control cells remained susceptible to the antiproliferative effects of the cytokines. Flow cytometry revealed that the percentage of cells in G0/G1 with the combination of cytokines was significantly increased by 24 h. The antiproliferative effect of IFN-γ alone and that of IFN-γ and TNF-α in combination were blocked completely using an antibody to the IFN-γ receptor. A hypothesized mechanism of tissue damage in autoimmune inflammatory disorders is via up-regulation of cell surface markers such as intercellular adhesion molecule type I (ICAM-1) and histocompatibility antigen HLA-DR which can exacerbate the inflammatory process. Treatment of HSG cells with IFN-γ, with or without TNF-α, resulted in increased levels of ICAM-1 and the acquisition of HLA-DR expression. These aggregate data suggest that IFN-γ alone can regulate the expression of cell surface markers involved in the inflammatory process as well as cause a potent yet reversible inhibition of HSG cell growth that is modulated by the presence of TNF-α. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   
    2.
    Microtubules (MTs) are cytoskeletal fibers that undergo dynamic instability (DI), a remarkable process involving phases of growth and shortening separated by stochastic transitions called catastrophe and rescue. Dissecting DI mechanism(s) requires first characterizing and quantifying these dynamics, a subjective process that often ignores complexity in MT behavior. We present a Statistical Tool for Automated Dynamic Instability Analysis (STADIA) that identifies and quantifies not only growth and shortening, but also a category of intermediate behaviors that we term “stutters.” During stutters, the rate of MT length change tends to be smaller in magnitude than during typical growth or shortening phases. Quantifying stutters and other behaviors with STADIA demonstrates that stutters precede most catastrophes in our in vitro experiments and dimer-scale MT simulations, suggesting that stutters are mechanistically involved in catastrophes. Related to this idea, we show that the anticatastrophe factor CLASP2γ works by promoting the return of stuttering MTs to growth. STADIA enables more comprehensive and data-driven analysis of MT dynamics compared with previous methods. The treatment of stutters as distinct and quantifiable DI behaviors provides new opportunities for analyzing mechanisms of MT dynamics and their regulation by binding proteins.  相似文献   
    3.
    The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.  相似文献   
    4.
    The transmembrane protein nephrin is a key component of the kidney slit diaphragm that contributes to the morphology of podocyte foot processes through signaling to the underlying actin cytoskeleton. We have recently reported that tyrosine phosphorylation of the cytoplasmic tail of nephrin facilitates recruitment of Nck SH2/SH3 adaptor proteins and subsequent actin remodeling and that phosphorylation of the Nck binding sites on nephrin is decreased during podocyte injury. We now demonstrate that Nck directly modulates nephrin phosphorylation through formation of a signaling complex with the Src family kinase Fyn. The ability of Nck to enhance nephrin phosphorylation is compromised in the presence of a Src family kinase inhibitor and when the SH3 domains of Nck are mutated. Furthermore, induced loss of Nck expression in podocytes in vivo is associated with a rapid reduction in nephrin tyrosine phosphorylation. Our results suggest that Nck may facilitate dynamic signaling events at the slit diaphragm by promoting Fyn-dependent phosphorylation of nephrin, which may be important in the regulation of foot process morphology and response to podocyte injury.  相似文献   
    5.
    Papaver bracteatum, a perennial species, has been known as a rich source of thebaine and a potential alternative to Papaver somniferum for the production of codeine and some semisynthetic antagonist drugs. In this study, ion mobility spectrum (IMS) of the root, leaf, bottom part of stem, upper part of stem, capsule wall, petal, and capsule content during developmental stages of P. bracteatum including annual rosette, perennial rosette, bud initiation, pendulous bud, preflowering, and lancing were investigated. The IMS revealed thebaine, papaverine, and noscapine as the major components of the extracted alkaloids. Based on the results of the study it appears that, at least in part, there is a competition among the biosynthesis pathways of papaverine, noscapine, and morphinan alkaloids from a common source . Root and capsule wall were the most potent organs for extraction of thebaine, while lancing stage was the best developmental stage for thebaine exploitation. However, it seems that total biomass of root and capsule wall plays a key role in the final selection of favorite organ. Although papaverine and noscapine in the stem at preflowering stage had the most quantity, significant amounts were found in the capsule wall. In general, total alkaloid content of leaf was lower than the other plant parts.  相似文献   
    6.
    7.
    8.
    9.
    While the differentiation factors have been widely used to differentiate mesenchymal stem cells (MSCs) into various cell types, they can cause harm at the same time. Therefore, it is beneficial to propose methods to differentiate MSCs without factors. Herein, magnetoelectric (ME) nanofibers were synthesized as the scaffold for the growth of MSCs and their differentiation into neural cells without factors. This nanocomposite takes the advantage of the synergies of the magnetostrictive filler, CoFe2O 4 nanoparticles (CFO), and piezoelectric polymer, polyvinylidene difluoride (PVDF). Graphene oxide nanosheets were decorated with CFO nanoparticles for a proper dispersion in the polymer through a hydrothermal process. After that, the piezoelectric PVDF polymer, which contained the magnetic nanoparticles, underwent the electrospun process to form ME nanofibers, the ME property of which has the potential to be used in areas such as tissue engineering, biosensors, and actuators.  相似文献   
    10.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号