首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   13篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   7篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
排序方式: 共有118条查询结果,搜索用时 78 毫秒
1.
2.
After treatment of synaptosomes with Nonidet-containing buffers, a proportion of the proteins remained insoluble. The major component (50%) of the residue was identified as a spectrin-like protein by immunodetection after mono- and bi-dimensional gel electrophoresis and transfer to nitrocellulose paper. Actin was also present.  相似文献   
3.
GTP-binding proteins have been proposed to be involved in some secretory processes. Bordetella pertussis toxin is known to catalyze ADP-ribosylation of several GTP-binding proteins. In this paper, the subcellular localization of B. pertussis toxin substrates has been explored in chromaffin cells of bovine adrenal medulla. With appropriate gel electrophoresis conditions, three ADP-ribosylated substrates of 39, 40 and 41 kDa were detectable in both plasma and granule membranes. The more intense labelling occurred on the 40 kDa component, while the 41 kDa species exhibited electrophoretic mobility similar to that of Gi alpha. Significant immunoreactivity with anti-Go alpha antibodies was detected at the level of the 39 kDa faster component. The association of G-proteins with granule and plasma membranes suggests the involvement of these proteins in the exocytotic process or in its regulation.  相似文献   
4.
Fast Ca2+ uptake into K+-depolarized cultured bovine adrenal chromaffin cells has been isotopically measured in a time scale of 1-10 s. Depolarized cells retained as much as 80-fold 45Ca2+ taken up by resting cells; Ca2+ was not taken up by fibroblasts or endothelial-like cells. Because Ca2+ entry was inhibited by inorganic (La3+, Co2+, Mg2+) and organic (nifedipine) Ca2+ channel antagonists and enhanced by the Ca2+ channel activator Bay-K-8644, it seems clear that Ca2+ gains access to the chromaffin cell cytosol mainly through specific voltage-dependent Ca2+ channels. Ca2+ uptake evoked by 59 mM K+ was linear during the first 5 s of stimulation and continued to rise at a much slower rate up to 60 s. The rate of Ca2+ entry became steeper as the external [Ca2+] increased; initial rates of Ca2+ uptake varied from 0.06 fmol/cells . s at 0.125 mM Ca2+ to 2.85 fmol/cell . s at 7.5 mM Ca2+. The early 90Sr2+ uptake was linear but faster than Ca2+ uptake and later on was also saturated; 133Ba2+ was taken up still at a much faster rate and was linear for the entire depolarization period (2-60 s). Increased [K+] gradually depolarized chromaffin cells; Ca2+ and Sr2+ uptakes were not apparent below 30 mM K+ but were linear for 30 to 60 mM K+. In contrast, substantial Ba2+ uptake was seen even in K+-free solutions; and in 5.9 mM K+, Ba2+ uptake was as high as Ca2+ uptake obtained in 60 mM K+. Five to ten-second pulses of 45Ca2+, 90Sr2+, or 133Ba2+ given at different times after pre-depolarization of chromaffin cells served to analyze the kinetics of inactivation of the rates of entry of each divalent cation. Inactivation of Ca2+ uptake was faster than Sr2+, and Ba2+ uptake inactivated very little. Neither voltage changes nor Ca2+ ions passing through the channels seems to cause their inactivation; however, experiments aimed to manipulate the levels of internal Ca2+ using the cell-permeable chelator Quin-2 or the ionophore A23187 strongly suggest that intracellular Ca2+ levels determine the rates of inactivation of these channels.  相似文献   
5.
Chromaffin cells both recently isolated or in culture present a high-affinity adenosine transporter with a Km value of 1 microM. When cells were exposed to nerve growth factor (NGF; 10 ng/ml), the adenosine transporter affinity decreased to 3 microM. This value was maintained from 3 days after plating to the end of the culture period. A change in the transport capacity was observed, with a significant increase (approximately 200-260%) in NGF-cultured cells throughout the period studied.  相似文献   
6.
Chromogranin A is a major component of storage granules in many different secretory cell types. After [35S]methionine labelling of proteins from cultured bovine chromaffin cells, chromogranin A was immunoprecipitated with specific antibodies, and the radioactivity incorporated into chromogranin A was determined and used as an index of its synthesis rate. Depolarization of cells with nicotine or high K+ evoked a Ca2+-dependent increase in chromogranin A synthesis, whereas muscarine, which does not evoke significant Ca2+ influx from bovine chromaffin cells, had no effect on chromogranin A synthesis. Forskolin, an activator of adenylate cyclase, affected neither the basal nor the nicotine-stimulated rate of chromogranin A synthesis. In contrast, 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C, significantly enhanced the incorporation of radioactivity into chromogranin A. Sphingosine, an inhibitor of protein kinase C, abolished both nicotine-stimulated and TPA-induced chromogranin A synthesis. In addition, long-term treatment of chromaffin cells with TPA decreased protein kinase C activity and inhibited the nicotine-stimulated chromogranin A synthesis. These results suggest that protein kinase C may play an important role in the control of chromogranin A synthesis.  相似文献   
7.
Adrenal medullary chromaffin cells were permeabilized by treatment with a streptococcal cytotoxin streptolysin O (SLO) which generates pores of macromolecular dimensions in the plasma membrane. SLO did not provoke spontaneous release of catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However, the addition of micromolar free calcium concentration induced the corelease of noradrenaline and chromogranin A, indicating that secretory products are liberated by exocytosis. Calcium-dependent exocytosis from SLO-permeabilized cells required Mg-ATP and could not occur in the presence of other nucleotides. The pores generated by the toxin were large enough to introduce proteins, e.g., immunoglobulins, but also caused efflux of the cytosolic marker lactate dehydrogenase. Despite this, the cells remained responsive to calcium for up to 30 min after permeabilization, indicating that they retained their secretory machinery. In the search for a functional role of cytoskeletal proteins in the secretory process, we used SLO-permeabilized cells to examine the localization of filamentous actin, using rhodamine-phalloidin, and that of the actin-severing protein, gelsolin, using specific antibodies. It was found that both F-actin and gelsolin were exclusively localized in the subplasmalemmal region of the cell. We examined the relationship between actin disassembly, the elevation of intracellular calcium and secretion in SLO-treated cells. F-Actin destabilizing agents such as cytochalasin D or DNase I were found to potentiate calcium-stimulated release. The maximal effect was observed at low calcium concentrations (1-4 microM) and at the later stages of the secretory response (after 10 min stimulation). In addition, using rhodamine-phalloidin, we observed that calcium provoked simultaneously both cortical actin disassembly and catecholamine release in SLO-permeabilized cells. These results demonstrate that a close relationship exists between the secretory response and actin disassembly and provide further evidence that intracellular calcium controls the subplasmalemmal cytoskeletal actin organization and thereby the access of secretory granules to exocytotic sites.  相似文献   
8.
9.
Abstract: Stimulation of several second messenger pathways induces the expression of immediate early genes such as c- fos , c- jun , junB , and junD , but little is known about their induction via the stimulation of the cyclic GMP pathway. Here we looked at the expression of early genes in pheochromocytoma PC12 cells after activation of cytosolic guanylate cyclase by sodium nitroprusside. This compound spontaneously releases NO, a molecule known to be involved in cell communication. We found that expression of c- fos and junB but not of c- jun or junD is increased upon activation of cyclic GMP pathway. c- fos mRNA expression was the most activated (fourfold at 30 min), whereas junB response was more modest (2.2-fold activation at 60 min). Nuclear extracts of stimulated cells show increased binding capacity to the AP1 binding site consistent with the dose-response curve. The activating effect of nitroprusside could be reproduced by dipyridamole, a selective cyclic GMP phosphodiesterase inhibitor and by 8- p -chlorophenylthio-cyclic GMP, a permeant selective cyclic GMP-dependent protein kinase activator, and abolished by KT5823, an inhibitor of that kinase. The results show that NO promotes early gene activation and AP1 binding enhancement through the stimulation of the cyclic GMP pathway.  相似文献   
10.
Abstract: We investigated the effect of the adenosine receptor agonist 5'-( N -ethylcarboxamido)adenosine (NECA) in catecholamine secretion from adrenal chromaffin cells that exhibit only the A2b subtype adenosine receptor. NECA reduced catecholamine release evoked by the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) in a time-dependent manner. Inhibition reached 25% after 30–40-min exposure to NECA. This effect on DMPP-evoked catecholamine secretion was mirrored by a similar (27.7 ± 3.3%), slowly developing inhibition of [Ca2+]i transients induced by DMPP that peaked at 30-min preincubation with NECA. The capacity of the chromaffin cells to buffer Ca2+ load was not affected by the treatment with NECA. Short-term treatment with NECA failed both to modify [Ca2+]i levels and to increase endogenous diacylglycerol production, showing that NECA does not activate the intracellular Ca2+/protein kinase C signaling pathway. The inhibitory effects of NECA were accompanied by a 30% increase of protein phosphatase activity in chromaffin cell cytosol. We suggest that dephosphorylation of a protein involved in DMPP-evoked Ca2+ influx pathway (e.g., L-type Ca2+ channels) could be the mechanism of the inhibitory action of adenosine receptor stimulation on catecholamine secretion from adrenal chromaffin cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号