首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   23篇
  国内免费   9篇
  2019年   3篇
  2018年   3篇
  2016年   8篇
  2015年   15篇
  2014年   21篇
  2013年   19篇
  2012年   11篇
  2011年   25篇
  2010年   15篇
  2009年   14篇
  2008年   9篇
  2007年   11篇
  2006年   16篇
  2005年   4篇
  2004年   11篇
  2003年   10篇
  2001年   6篇
  2000年   10篇
  1999年   5篇
  1998年   9篇
  1997年   6篇
  1996年   7篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   8篇
  1988年   9篇
  1987年   5篇
  1986年   8篇
  1985年   3篇
  1983年   4篇
  1982年   4篇
  1977年   4篇
  1974年   4篇
  1972年   4篇
  1970年   3篇
  1937年   2篇
  1936年   2篇
  1929年   2篇
  1928年   3篇
  1927年   3篇
  1925年   2篇
  1921年   2篇
  1920年   3篇
  1918年   2篇
  1917年   2篇
  1914年   2篇
  1908年   3篇
排序方式: 共有382条查询结果,搜索用时 15 毫秒
1.
G M?rdh  D S Auld  B L Vallee 《Biochemistry》1987,26(24):7585-7588
Thyroid hormones are potent, instantaneous, and reversible inhibitors of ethanol oxidation catalyzed by isozymes of class I and II human alcohol dehydrogenase (ADH). None of the thyroid hormones inhibits class III ADH. At pH 7.40 the apparent Ki values vary between 55 and 110 microM for triiodothyronine, 35 and greater than 200 microM for thyroxine, and 10 and 23 microM for triiodothyroacetic acid. The inhibition is of a mixed type toward both NAD+ and ethanol. The binding of the thyroid hormone triiodothyronine to beta 1 gamma 1 ADH is mutually exclusive with 1,10-phenanthroline, 4-methylpyrazole, and testosterone, identifying a binding site(s) for the thyroid hormones, which overlap(s) both the 1,10-phenanthroline site near the active site zinc atom and the testosterone binding site, the latter being a regulatory site on the gamma-subunit-containing isozymes and distinct from their catalytic site. The inhibition by thyroid hormones may have implications for regulation of ADH catalysis of ethanol and alcohols in the intermediary metabolism of dopamine, norepinephrine, and serotonin and in steroid metabolism. In concert with other hormonal regulators, e.g., testosterone, the rate of ADH catalysis is capable of being fine tuned in accord with both substrate and modulator concentrations.  相似文献   
2.
3.
D S Auld  G J Pielak 《Biochemistry》1991,30(35):8684-8690
The interaction of the N- and C-terminal helices is a hallmark of the cytochrome c family. Oligodeoxyribonucleotide-directed random mutagenesis within the gene encoding the C102T protein variant of Saccharomyces cerevisiae iso-1-cytochrome c was used to generate a library of mutations at the evolutionary invariant residues Gly-6 and Phe-10 in the N-terminal helix. Transformation of this library (contained on a low-copy-number yeast shuttle phagemid) into a yeast strain lacking a functional cytochrome c, followed by selection for cytochrome c function, reveals that 4-10% of the 400 possible amino acid substitutions are compatible with function. DNA sequence analysis of phagemids isolated from transformants exhibiting the functional phenotype elucidates the requirements for a stable helical interface. Basic residues are not tolerated at position 6 or 10. There is a broad volume constraint for amino acids at position 6. The amino acid substitutions observed to be compatible with function at Phe-10 show that the hydrophobic effect alone is sufficient to promote helical association. There are severe constraints that limit the combinations consistent with function, but the number of functionally consistent combinations observed exemplifies the plasticity of proteins.  相似文献   
4.
5.
Carboxypeptidase A: mechanism of zinc inhibition   总被引:1,自引:0,他引:1  
K S Larsen  D S Auld 《Biochemistry》1989,28(25):9620-9625
Zinc ions competitively inhibit carboxypeptidase A from bovine pancreas. The state(s) of hydroxylation of zinc and their possible site(s) of interaction with the enzyme have been investigated by determining the strength of zinc inhibition over pH range 4.6-10.5. The inhibition kinetics were recorded under stopped-flow conditions using the alpha-Val isozyme and the peptide substrate Dns-Gly-Ala-Phe in 0.5 M NaCl at 25 degrees C. The pH dependence of pKI follows a pattern which indicates that the enzyme is selectively inhibited by zinc monohydroxide, ZnOH+ (KI = 7.1 X 10(-7) M). The formation of the inhibitory ZnOH+ complex from fully hydrated Zn2+ is characterized by an ionization constant of 9.05, and the consecutive conversion of ZnOH+ to Zn(OH)2, Zn(OH)3-, and Zn(OH)4(2-) complexes takes place with ionization constants of 9.75, 10.1, and 10.5, respectively. Ionization of a ligand, LH, in the enzyme's inhibitory site (pKLH 5.8) is obligatory for binding of the ZnOH+ complex. The enzymatic activity (kcat/Km) is influenced by three ionizable groups: pKEH2 5.78, pKEH 8.60, and pKE 10.2. Since the values of pKLH and pKEH2 are virtually identical, it is possible that the inhibitory ZnOH+ complex interacts with the group responsible for pKEH2. Previous studies have suggested that pKEH2 reflects the ionization of Glu-270 and its interaction with a water molecule coordinated to the catalytic zinc ion. It is proposed that the inhibitory zinc ion binds to the carboxylate of Glu-270 and that the inhibition process is specific for zinc monohydroxide because it allows the formation of a stabilizing hydroxide bridge between the inhibitory and catalytic zinc ions.  相似文献   
6.
13C NMR T1 and T2 measurements have been performed on cobalt(II) substituted carboxypeptidase A in the presence of carboxylate-13C-enriched L- and D-phenylalanine. Upon binding to the cobalt enzyme, the longitudinal and transverse relaxation rates T1p-1 and T2p-1 of these inhibitors are enhanced significantly compared to the zinc enzyme, allowing both determination of an affinity constant for inhibitor binding, K, and calculation of the metal-13C carboxylate distances. The L-and D- Phe concentration dependence of T2p-1 yields affinity constants of 290 +/- 60M-1 and 670 +/- 90M-1. The distance measurements calculated for Co-13C from T1p-1 are 0.39 +/- 0.04 and 0.42 +/- 0.04 nm for L-Phe and D-Phe. Both values are too great for direct coordination of their carboxylate groups to the metal atom. Upon formation of their respective ternary enzyme.Phe.N3- complexes, the distances are essentially unaltered. In conjunction with electronic absorption studies on these complexes it can be concluded that N3-, but not the amino acid carboxylate, is bound to the metal.  相似文献   
7.
The cobalt absorption and electron paramagnetic resonance (EPR) spectra of cobalt carboxypeptidase undergo unique variations on formation of catalytic peptide and ester intermediates as previously recorded in cryoenzymologic experiments employing rapid-scanning spectroscopy and cryotrapping [Geoghegan, K. F., Galdes, A., Martinelli, R. A., Holmquist, B., Auld, D.S., & Vallee, B. L. (1983) Biochemistry 22, 2255-2262]. We here describe a means of stabilizing these intermediates, which we have termed "equilibrium trapping". It allows peptide intermediates to be observed for longer periods (much greater than 1 min) at ambient as well as subzero temperatures. The reaction intermediate with the rapidly turned over peptide substrate Dns-Ala-Ala-Phe is trapped when the cobalt enzyme (greater than 10 microM) has catalyzed the attainment of chemical equilibrium between high concentrations of the hydrolysis products Dns-Ala-Ala, 10 mM, and L-phenylalanine, 50 mM, and the product of their coupling Dns-Ala-Ala-Phe. Under these conditions, Dns-Ala-Ala-Phe is present in the equilibrated substrate-product reaction mixture at a level that exceeds the one predicted on the basis of K'eq for hydrolysis of this substrate and is close to the enzyme concentration. Other pairs of peptide hydrolysis products yield similar results. Visible absorption and EPR spectra of the cobalt enzyme show that the synthesized peptide binds to the active site in the mode previously recognized as the ES2 catalytic intermediate in peptide hydrolysis. Equilibrium trapping of the ES2 intermediate allows analysis of its physicochemical properties by methods that could not be employed readily under cryoenzymological conditions, e.g., circular dichroic and magnetic circular dichroic spectra.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
9.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
10.
Molecular phylogeny and divergence times of drosophilid species   总被引:32,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号