首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   7篇
  国内免费   1篇
  2023年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   7篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1971年   1篇
  1958年   2篇
  1957年   2篇
  1954年   1篇
  1951年   1篇
排序方式: 共有93条查询结果,搜索用时 31 毫秒
1.
2.
The metabolic response to L-lysine of Escherichia coli ATCC 13002, a lysine-histidine double auxotroph, has been examined in a synthetic medium containing sucrose. In shaken cultures largest amounts of extracellular DAP were produced with an initial lysine concentration of 7·5 mg/1 and in static cultures of 2·5 mg/1. Considerably smaller amounts of DAP accumulated under stationary conditions. In cultures shaken for 20 and 43 h there was an overall decrease in the yields of DAP, expressed in terms of cell biomass and of sucrose consumed, as the initial concentration of lysine was increased from 0·75 mg/1 in steps up to 25 mg/1. The regulatory effect of lysine on DAP production was also observed when lysine was supplied to cultures at a constant rate employing diffusion capsules.  相似文献   
3.
Recently, we presented a compartmental model of the pulmonary vascular resistance (R) and compliance (C) distribution with the configuration C1R1C2R2C3 (J. Appl. Physiol. 70: 2126-2136, 1991). This model was used to interpret the pressure vs. time data obtained after the sudden occlusion of the arterial inflow (AO), venous outflow (VO), or both inflow and outflow (DO) from an isolated dog lung lobe. In the present study, we present a new approach to the data analysis in terms of this model that is relatively simple to carry out and more robust. The data used to estimate the R's and C's are the steady-state arterial [Pa(0)] and venous [Pv(0)] pressures, the flow rate (Q), the area (A2) encompassed by Pa(t) after AO and the equilibrium pressure (Pd) after DO, and the average slope (m) of the Pa(t) and Pv(t) curves after VO. The following formulas can then be used to calculate the 2 R's and 3 C's: [Pa(0) - Pv(0)]/Q = R1 + R2 = RT, R1C1 congruent to to A2/[Pa(0) - Pd], R1 congruent to [Pa(0) - Pd]/Q, Q/m = C1 + C2 + C3 = CT, and C2 = CT - (RTC1/R2).  相似文献   
4.
The phagocytic activity of neuroglial cells in adult feline degenerating optic nerve was investigated by immunocytochemistry at both light and electron microscopy levels. Degeneration was initiated by unilateral eye enucleation and the segment distal to the transection showing true Wallerian degeneration was examined. Following enucleation, twelve adult domestic cats were examined over a period of seven to 215 days. All cases showed slow clearance of myelin debris and absence of proliferating monocytes throughout the post-enucleation period. All phagocytic cells present were neuroglial cells, and many of these cells expressed oligodendroglial antigens. These findings demonstrate the persistence of an active population of oligodendrocytes that might play an additional functional role during Wallerian degeneration of feline optic nerve.  相似文献   
5.
The protective antigen (PA) is one of the three components of the anthrax toxin. It is a secreted nontoxic protein with a molecular weight of 83 kDa and is the major component of the currently licensed human vaccine for anthrax. Due to limitations found in the existing vaccine formulation, it has been proposed that genetically modified PA may be more effective as a vaccine. The expression and the stability of two recombinant PA (rPA) variants, PA-SNKE-ΔFF-E308D and PA-N657A, were studied. These proteins were expressed in the nonsporogenic avirulent strain BH445. Initial results indicated that PA-SNKE-ΔFF-E308D, which lacks two proteolysis-sensitive sites, is more stable than PA-N657A. Process development was conducted to establish an efficient production and purification process for PA-SNKE-ΔFF-E308D. pH, media composition, growth strategy and protease inhibitors composition were analyzed. The production process chosen was based on batch growth of B. anthracis using tryptone and yeast extract as the only source of carbon, pH control at 7.5, and antifoam 289. Optimal harvest time was 14–18 h after inoculation, and EDTA (5 mM) was added upon harvest for proteolysis control. Recovery of the rPA was performed by expanded-bed adsorption (EBA) on a hydrophobic interaction chromatography (HIC) resin, eliminating the need for centrifugation, microfiltration and diafiltration. The EBA step was followed by ion exchange and gel filtration. rPA yields before and after purification were 130 and 90 mg/l, respectively. The purified rPA, without further treatment, treated with small amounts of formalin or adsorbed on alum, induced, high levels of IgG anti-PA with neutralization activities. Journal of Industrial Microbiology & Biotechnology (2002) 28, 232–238 DOI: 10.1038/sj/jim/7000239 Received 28 August 2001/ Accepted in revised form 20 December 2001  相似文献   
6.
A rapid, simple, accurate and highly sensitive spectrofluorimetric method was developed for the simultaneous analysis of nebivolol hydrochloride (NEB) and amlodipine besylate (AML). The method was based on measuring the synchronous fluorescence intensity of the drugs at Δλ = 40 nm in methanol. Various experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully studied and optimized. The calibration plots were rectilinear over concentration ranges of 0.05–1.5 µg/mL and 0.5–10 µg/mL for NEB and AML with limits of detection (LOD) of 0.010 and 0.051 µg/mL and limits of quantitation (LOQ) of 0.031 and 0.156, respectively. The peak amplitudes (2D) of the second derivative synchronous fluorimetry (SDSF) were estimated at 282 nm for NEB and at 393 nm for AML. Good linearity was obtained over the concentration ranges. The proposed method was successfully applied to the determination of the studied compounds in laboratory‐prepared mixtures, commercial single and laboratory‐prepared tablets. The results were in good agreement with those obtained using the comparison method. The mean percent recoveries were found to be 100.12 ± 0.77 and 99.91 ± 0.77 for NEB and AML, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
The objective was to determine the impact of intact normoxic and hyperoxia-exposed (95% O(2) for 48 h) bovine pulmonary arterial endothelial cells in culture on the redox status of the coenzyme Q(10) homolog coenzyme Q(1) (CoQ(1)). When CoQ(1) (50 microM) was incubated with the cells for 30 min, its concentration in the medium decreased over time, reaching a lower level for normoxic than hyperoxia-exposed cells. The decreases in CoQ(1) concentration were associated with generation of CoQ(1) hydroquinone (CoQ(1)H(2)), wherein 3.4 times more CoQ(1)H(2) was produced in the normoxic than hyperoxia-exposed cell medium (8.2 +/- 0.3 and 2.4 +/- 0.4 microM, means +/- SE, respectively) after 30 min. The maximum CoQ(1) reduction rate for the hyperoxia-exposed cells, measured using the cell membrane-impermeant redox indicator potassium ferricyanide, was about one-half that of normoxic cells (11.4 and 24.1 nmol x min(-1) x mg(-1) cell protein, respectively). The mitochondrial electron transport complex I inhibitor rotenone decreased the CoQ(1) reduction rate by 85% in the normoxic cells and 44% in the hyperoxia-exposed cells. There was little or no inhibitory effect of NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors on CoQ(1) reduction. Intact cell oxygen consumption rates and complex I activities in mitochondria-enriched fractions were also lower for hyperoxia-exposed than normoxic cells. The implication is that intact pulmonary endothelial cells influence the redox status of CoQ(1) via complex I-mediated reduction to CoQ(1)H(2), which appears in the extracellular medium, and that the hyperoxic exposure decreases the overall CoQ(1) reduction capacity via a depression in complex I activity.  相似文献   
8.
Little is known about the effect of exercise training on the expression of adiponectin receptor genes in peripheral blood mononuclear cells (PBMCs). In this study, we investigated the effects of aerobic training on the expression of AdipoR1 and AidpoR2 mRNAs in PBMCs, whole body insulin sensitivity, and circulating adiponectins in men. Thirty young men were randomly assigned to either a control (n=15) or an exercise (n=15) group. Subjects assigned to the exercise group underwent a 12-week jogging and/or running programme on a motor-driven treadmill at an intensity of 60%-75% of the age-based maximum heart rate with duration of 40 minutes per session and a frequency of 5 days per week. Two-way mixed ANOVA with repeated measures was used to test any significant time-by-group interaction effects for the measured variables at p=0.05. We found significant time-by-group interaction effects for waist circumference (p=0.001), VO2max (p<0.001), fasting insulin (p=0.016), homeostasis model assessment for insulin resistance (HOMA-IR) (p=0.010), area under the curve (AUC) for insulin response during the 75-g oral glucose tolerance test (p=0.002), high-molecular weight (HMW) adiponectin (p=0.016), and the PBMC mRNA levels of AdipoR1 (p<0.001) and AdipoR2 (p=0.001). The exercise group had significantly increased mRNA levels of AdipoR1 and AdipoR2 in PBMCs, along with increased whole body insulin sensitivity and HMW adiponectin, decreased waist circumference, and increased VO2max compared with the control group. In summary, the current findings suggest that exercise training modulates the expression of AdipoR1 and AdipoR2 mRNAs in PBMCs, implying that manipulation of the expression of these genes could be a potential surrogate for lifestyle intervention-mediated improvements of whole body insulin sensitivity and glucose homeostasis.  相似文献   
9.

Background

Characterizing infectious disease burden in Africa is important for prioritizing and targeting limited resources for curative and preventive services and monitoring the impact of interventions.

Methods

From June 1, 2006 to May 31, 2008, we estimated rates of acute lower respiratory tract illness (ALRI), diarrhea and acute febrile illness (AFI) among >50,000 persons participating in population-based surveillance in impoverished, rural western Kenya (Asembo) and an informal settlement in Nairobi, Kenya (Kibera). Field workers visited households every two weeks, collecting recent illness information and performing limited exams. Participants could access free high-quality care in a designated referral clinic in each site. Incidence and longitudinal prevalence were calculated and compared using Poisson regression.

Results

Incidence rates resulting in clinic visitation were the following: ALRI — 0.36 and 0.51 episodes per year for children <5 years and 0.067 and 0.026 for persons ≥5 years in Asembo and Kibera, respectively; diarrhea — 0.40 and 0.71 episodes per year for children <5 years and 0.09 and 0.062 for persons ≥5 years in Asembo and Kibera, respectively; AFI — 0.17 and 0.09 episodes per year for children <5 years and 0.03 and 0.015 for persons ≥5 years in Asembo and Kibera, respectively. Annually, based on household visits, children <5 years in Asembo and Kibera had 60 and 27 cough days, 10 and 8 diarrhea days, and 37 and 11 fever days, respectively. Household-based rates were higher than clinic rates for diarrhea and AFI, this difference being several-fold greater in the rural than urban site.

Conclusions

Individuals in poor Kenyan communities still suffer from a high burden of infectious diseases, which likely hampers their development. Urban slum and rural disease incidence and clinic utilization are sufficiently disparate in Africa to warrant data from both settings for estimating burden and focusing interventions.  相似文献   
10.
NAD(P)H:quinone oxidoreductase 1 (NQO1) plays a dominant role in the reduction of the quinone compound 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ) to durohydroquinone (DQH2) on passage through the rat lung. Exposure of adult rats to 85% O2 for > or =7 days stimulates adaptation to the otherwise lethal effects of >95% O2. The objective of this study was to examine whether exposure of adult rats to hyperoxia affected lung NQO1 activity as measured by the rate of DQ reduction on passage through the lung. We measured DQH2 appearance in the venous effluent during DQ infusion at different concentrations into the pulmonary artery of isolated perfused lungs from rats exposed to room air or to 85% O2. We also evaluated the effect of hyperoxia on vascular transit time distribution and measured NQO1 activity and protein in lung homogenate. The results demonstrate that exposure to 85% O2 for 21 days increases lung capacity to reduce DQ to DQH2 and that NQO1 is the dominant DQ reductase in normoxic and hyperoxic lungs. Kinetic analysis revealed that 21-day hyperoxia exposure increased the maximum rate of pulmonary DQ reduction, Vmax, and the apparent Michaelis-Menten constant for DQ reduction, Kma. The increase in Vmax suggests a hyperoxia-induced increase in NQO1 activity of lung cells accessible to DQ from the vascular region, consistent qualitatively but not quantitatively with an increase in lung homogenate NQO1 activity in 21-day hyperoxic lungs. The increase in Kma could be accounted for by approximately 40% increase in vascular transit time heterogeneity in 21-day hyperoxic lungs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号