首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   5篇
  2019年   3篇
  2018年   3篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   1篇
  2012年   13篇
  2011年   7篇
  2010年   9篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1962年   1篇
  1941年   1篇
  1935年   1篇
排序方式: 共有88条查询结果,搜索用时 46 毫秒
1.
Two established techniques for analysis of plasma membranes, namely, lactoperoxidase catalyzed surface radioiodination of intact cells and bulk membrane isolation following disruption of cells by shear forces, were applied in studies of membrane proteins of continuously cultured cells of the monoclonal T lymphoma line WEHI-22. It was found that macromolecular 125I-iodide incorporated into plasma membrane proteins of intact cells was at least as good a marker for the plasma as was the commonly used enzyme 5'-nucleotidase. T lymphoma plasma membrane proteins were complex when analysed by polyacrylamide gel electrophoresis in sodium dodecylsulphate-containing buffers and more than thirty distinct components were resolved. More than fifteen of the components observed on a mass basis were also labelled with 125I-iodide. Certain bands, however, exhibited a degree of label disproportionate to their staining properties with Coomassie Blue. This was interpreted in terms of their accessibility to the solvent in the intact cells.  相似文献   
2.
Plants growing in soils typically experience a mixture of loose and compact soil. The hypothesis that the proportion of a root system exposed to compact soil and/or the timing at which this exposure occurs determines shoot growth responses was tested. Broccoli (Brassica oleracea var. italica cv. Greenbelt) seedlings were grown in pot experiments with compact, loose and localized soil compaction created by either horizontal (compact subsoils 75 or 150 mm below loose topsoil) or vertical (adjacent compact and loose columns of soil) configurations of loose (1.2 Mg m(-3)) and compact (1.8 Mg m(-3)) soil. Entirely compact soil reduced leaf area by up to 54%, relative to loose soil. When compaction was localized, only the vertical columns of compact and loose soil reduced leaf area (by 30%). Neither the proportion of roots in compact soil nor the timing of exposure could explain the differing shoot growth responses to localized soil compaction. Instead, the strong relationship between total root length and leaf area (r(2)=0.92) indicated that localized soil compaction reduced shoot growth only when it suppressed total root length. This occurred when isolated root axes of the same plant were exposed to vertical columns of compact and loose soil. When a single root axis grew through loose soil into either a shallow or deep compact subsoil, compensatory root growth in the loose soil maintained total root length and thus shoot growth was unaffected. These contrasting root systems responses to localized soil compaction may explain the variable shoot growth responses observed under heterogeneous conditions.  相似文献   
3.
Bran from bread wheat (Triticum aestivum ‘Babbler’) grain is composed of many outer layers of dead maternal tissues that overlie living aleurone cells. The dead cell layers function as a barrier resistant to degradation, whereas the aleurone layer is involved in mobilizing organic substrates in the endosperm during germination. We microdissected three defined bran fractions, outer layers (epidermis and hypodermis), intermediate fraction (cross cells, tube cells, testa, and nucellar tissue), and inner layer (aleurone cells), and used proteomics to identify their individual protein complements. All proteins of the outer layers were enzymes, whose function is to provide direct protection against pathogens or improve tissue strength. The more complex proteome of the intermediate layers suggests a greater diversity of function, including the inhibition of enzymes secreted by pathogens. The inner layer contains proteins involved in metabolism, as would be expected from live aleurone cells, but this layer also includes defense enzymes and inhibitors as well as 7S globulin (specific to this layer). Using immunofluorescence microscopy, oxalate oxidase was localized predominantly to the outer layers, xylanase inhibitor protein I to the xylan-rich nucellar layer of the intermediate fraction and pathogenesis-related protein 4 mainly to the aleurone. Activities of the water-extractable enzymes oxalate oxidase, peroxidase, and polyphenol oxidase were highest in the outer layers, whereas chitinase activity was found only in assays of whole grains. We conclude that the differential protein complements of each bran layer in wheat provide distinct lines of defense in protecting the embryo and nutrient-rich endosperm.Wheat grain (Triticum aestivum) is a major cereal crop and staple food in many parts of the world. The endosperm is the main nutritional component and is extracted in milling to produce base ingredients such as flour and semolina. Crop yield and quality may be compromised by both environmental and biological stresses. Wheat varieties are known to vary in their resistance to such stresses, probably due to individual differences in defense protein levels (Demeke and Morris, 2002; Bonnin et al., 2005; Yarullina et al., 2005). Cereal grain contains many defense proteins that have been categorized according to their mode of action and structural similarities. A major class of these is the pathogenesis-related (PR) proteins, which include PR-1, PR-2 (β -1,3-glucanases), PR-3 (chitinases), PR-4 (wheatwin1), and PR-5 (thaumatin-like proteins; Selitrennikoff, 2001; Desmond et al., 2006). Other known defense proteins are xylanase inhibitor proteins (XIPs) and α -amylase inhibitor proteins (Mundy et al., 1984; Payan et al., 2003). All of these defense proteins have both general and specific roles that contribute to plant survival, although little is known of their location within the various grain tissues, particularly the multiple layers that constitute bran.Proteomic analysis of wheat grain has previously been applied to identify proteins in the germ and endosperm (Skylas et al., 2000; Wong et al., 2004; Mak et al., 2006), but analysis of bran and bran tissue fractions has not been reported. Collection of sufficiently pure bran tissue fractions has limited progress, mainly due to the strong bonds between the various bran tissue layers and endosperm in dry grain. Thus, a method to obtain bran layers free from contaminants, such as adjacent tissue and endosperm, is required to provide a sample suitable for proteomic analysis. Soaking whole grain in water causes the endosperm to soften, allowing it to be easily removed and washed from the bran; the bran becomes malleable enough to dissect. While this approach might not identify the proteome of dry grain fractions, it is the best available representation of the three distinct tissue fractions in grains, namely the outer layer (epidermis and hypodermis), intermediate layer (cross cells, tube cells, testa, and nucellar tissue), and inner layer (aleurone cells; Antoine et al., 2003, 2004). Using this method, water-soluble proteins that diffuse from the grain can be collected and identified.In this study we aimed (1) to dissect bran into the three separate tissue fractions described above and to identify the protein complement of each fraction using proteomics, (2) to confirm the location of three major defense proteins identified (one from each microfraction) using immunolocalization, and (3) to identify water-soluble proteins and assay any defense-related proteins for enzymatic activity.  相似文献   
4.
BACKGROUND AND AIMS: Root axes elongate slowly and swell radially under mechanical impedance. However, temporal and spatial changes to impeded root apices have only been described qualitatively. This paper aims (a) to quantify morphological changes to root apices and (b) assess whether these changes pre-dispose young root tissues to hypoxia. METHODS: Lupin (Lupinus angustifolius) seedlings were grown into coarse sand that was pressurized through a diaphragm to generate mechanical impedance on growing root axes. In situ observations yielded growth rates and root response to hypoxia. Roots were then removed to assess morphology, cell lengths and local growth velocities. Oxygen uptake into excised segments was measured. KEY RESULTS: An applied pressure of 15 kPa slowed root extension by 75% after 10-20 h while the same axes thickened by about 50%. The most terminal 2-3 mm of axes did not respond morphologically to impedance, in spite of the slower flux of cells out of this region. The basal boundary of root extension encroached to within 4 mm of the apex (cf. 10 mm in unimpeded roots), while radial swelling extended 10 mm behind the apex in impeded roots. Oxygen demand by segments of these short, thick, impeded roots was significantly different from segments of unimpeded roots when the zones of elongation in each treatment were compared. Specifically, impeded roots consumed O2 faster and O2 consumption was more likely to be O2-limited over a substantial proportion of the elongation zone, making these roots more susceptible to O2 deficit. Impeded roots used more O2 per unit growth (measured as either unit of elongation or unit of volumetric expansion) than unimpeded roots. Extension of impeded roots in situ was O2-limited at sub-atmospheric O2 levels (21% O2), while unimpeded roots were only limited below 11% O2. CONCLUSIONS: The shift in the zone of extension towards the apex in impeded roots coincided with greater vulnerability to hypoxia even after soil was removed. Roots still encased in impeded soil are likely to suffer from marked O2 deficits.  相似文献   
5.
6.
Large animals, having large vocal organs, produce low sound frequencies more efficiently. Accordingly, the frequency of vocalizations is often negatively related to body size across species, and also among individuals of many species, including several non‐oscine birds (non‐songbirds). Little is known about whether song frequency reveals information about body size within oscine species, which are characterized by song learning and large repertoires. We asked whether song frequency is related to body size in two oscines that differ in repertoire size: the dark‐eyed junco (Junco hyemalis) and the serin (Serinus serinus). We also asked whether the extent to which receivers sample repertoires might influence the reliability of their assessment of body size. We found that none of the frequency traits of song that we investigated was related to male body size, nor did more extensive sampling of repertoires lead to any relationship between frequency and body size. Possible reasons for these results are the small range of variation in size within species, or the elaborate vocal physiology of oscines that gives them great control over a wide frequency range. We discuss these results as they relate to female preferences for high‐frequency song that have been previously reported for oscine species.  相似文献   
7.
Rat parietal cells were incubated for 2 h with pertussis toxin (100 ng/ml) which ADP-ribosylates and inactivates guanine nucleotide regulatory proteins (G proteins) of the 'Gi-like' family. The effect of this pretreatment on the action of inhibitors of parietal cell acid secretion was investigated by using the accumulation of the weak base aminopyrine as an index of secretory activity. The inhibitory actions of near maximally effective concentrations of prostaglandin E2 (PGE2), somatostatin and epidermal growth factor (EGF) on histamine-stimulated aminopyrine accumulation were reduced by 83%, 72% and 70%, respectively, by preincubation with pertussis toxin. By contrast, the inhibitory action of a near maximally effective concentration of 12-O-tetradecanoylphorbol 13-acetate on histamine-stimulated aminopyrine accumulation was reduced by only 12%. It is concluded that G-proteins are involved in the inhibitory actions of PGE2, somatostatin and EGF on parietal cells. However, since the inhibitory actions of PGE2 and EGF can be distinguished by the blockade of the action of EGF, but not that of PGE2, by 3-isobutyl-1-methylxanthine, it is possible that PGE2 and EGF either activate the same G-protein in different ways or work through different G-proteins.  相似文献   
8.
Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in-frame deletion of phenylalanine (F508del), located in the first nucleotide-binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra- and inter-domain folding is impaired. (F508del)CFTR is a temperature-sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (Tm) by 6–7°C and that unfolding occurs via a kinetically-controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three-state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) ⇄ IT(±MgATP) → AT → (AT)n. The equilibrium unfolding to intermediate, IT, is followed by the rate-determining, irreversible formation of a partially folded, aggregation-prone, monomeric state, AT, for which aggregation to (AT)n and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of AT.  相似文献   
9.
Reports of female song, once considered a rarity, have recently increased across a variety of avian taxa. Females of many species can be induced to produce male‐like song with exogenous testosterone, but observations of female song in free‐living birds remain limited by incomplete sampling of females. Here, we report three independent observations of female dark‐eyed juncos Junco hyemalis producing male‐like song early in the breeding season (i.e. post‐territory establishment, pre‐nesting) in a recently established non‐migratory, urban population. To elicit song, we presented 17 free‐living junco pairs with a live, caged female conspecific. Three unique females responded to our trials by diving at the intruding female, chasing their (male) mate, fanning their tail feathers, and singing a trilled song similar in structure to male long‐range (broadcast) song. We compared male and female songs quantitatively and found that the two sexes were statistically similar in many spectral and temporal characteristics, but female songs had significantly lower minimum and peak frequencies than males. This result is particularly surprising, as males in this urban population are known to sing at a significantly higher minimum frequency than males in a nearby montane population. Both the seasonal and social context in which these songs were observed suggest a potential function for female song in mate guarding and polygyny prevention, but more data are needed to test this hypothesis. Whether female song is common in all dark‐eyed juncos during the early breeding season or if it is restricted to this particular urban and non‐migratory population remains an important question for future research.  相似文献   
10.
Hormones coordinate the co-expression of behavioral, physiological, and morphological traits, giving rise to correlations among traits and organisms whose parts work well together. This article considers the implications of these hormonal correlations with respect to the evolution of hormone-mediated traits. Such traits can evolve owing to changes in hormone secretion, hormonal affinity for carrier proteins, rates of degradation and conversion, and interaction with target tissues to name a few. Critically, however, we know very little about whether these changes occur independently or in tandem, and thus whether hormones promote the evolution of tight phenotypic integration or readily allow the parts of the phenotype to evolve independently. For example, when selection favors a change in expression of hormonally mediated characters, is that alteration likely to come about through changes in hormone secretion (signal strength), changes in response to a fixed level of secretion (sensitivity of target tissues), or both? At one extreme, if the phenotype is tightly integrated and only the signal responds via selection's action on one or more hormonally mediated traits, adaptive modification may be constrained by past selection for phenotypic integration. Alternatively, response to selection may be facilitated if multivariate selection favors new combinations that can be easily achieved by a change in signal strength. On the other hand, if individual target tissues readily "unplug" from a hormone signal in response to selection, then the phenotype may be seen as a loose confederation that responds on a trait-by-trait basis, easily allowing adaptive modification, although perhaps more slowly than if signal variation were the primary mode of evolutionary response. Studies reviewed here and questions for future research address the relative importance of integration and independence by comparing sexes, individuals, and populations. Most attention is devoted to the hormone testosterone (T) and a songbird species, the dark-eyed junco (Junco hyemalis).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号