首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1992年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
Although sterol carrier protein-2 (SCP-2) binds, transfers, and/or enhances the metabolism of many membrane lipid species (fatty acids, cholesterol, phospholipids), it is not known if SCP-2 expression actually alters the membrane distribution of lipids in living cells or tissues. As shown herein for the first time, expression of SCP-2 in transfected L-cell fibroblasts reduced the plasma membrane levels of lipid species known to traffic through the HDL-receptor-mediated efflux pathway: cholesterol, cholesteryl esters, and phospholipids. While the ratio of cholesterol/phospholipid in plasma membranes of intact cells was not changed by SCP-2 expression, phosphatidylinositol, a molecule important to intracellular signaling and vesicular trafficking, and anionic phospholipids were selectively retained. Only modest alterations in plasma membrane phospholipid percent fatty acid composition but no overall change in the proportion of saturated, unsaturated, monounsaturated, or polyunsaturated fatty acids were observed. The reduced plasma membrane content of cholesterol was not due to SCP-2 inhibition of sterol transfer from the lysosomes to the plasma membranes. SCP-2 dramatically enhanced sterol transfer from isolated lysosomal membranes to plasma membranes by eliciting detectable sterol transfer within 30 s, decreasing the t(1/2) for sterol transfer 364-fold from >4 days to 7-15 min, and inducing formation of rapidly transferable sterol domains. In summary, data obtained with intact transfected cells and in vitro sterol transfer assays showed that SCP-2 expression (i) selectively modulated plasma membrane lipid composition and (ii) decreased the plasma membrane content cholesterol, an effect potentially due to more rapid SCP-2-mediated cholesterol transfer from versus to the plasma membrane.  相似文献   
2.
Sterol carrier protein-2 (SCP-2) and SCP-x are ubiquitous proteins found in all mammalian tissues. Although both proteins interact with fatty acids, their relative contributions to the uptake, oxidation, and esterification of straight-chain (palmitic) and branched-chain (phytanic) fatty acids in living cells has not been resolved. Therefore, the effects of each gene product on fatty acid metabolism was individually examined. Based on the following, SCP-2 and SCP-x did not enhance the uptake/translocation of fatty acids across the plasma membrane into the cell: i) a 2-fold increase in phytanic and palmitic acid uptake was observed at long incubation times in SCP-2- and SCP-x-expressing cells, but no differences were observed at initial time points; ii) uptake of 2-bromo-palmitate, a nonoxidizable, poorly metabolizable fatty acid analog, was unaffected by SCP-2 or SCP-x overexpression; and iii) SCP-2 and SCP-x expression did not increase targeting of radiolabeled phytanic and palmitic acid to the unesterified fatty acid pool. Moreover, SCP-2 and SCP-x expression enhanced fatty acid uptake by stimulating the intracellular metabolism via fatty acid oxidation and esterification. In summary, these data showed for the first time that SCP-2 and SCP-x stimulate oxidation and esterification of branched-chain as well as straight-chain fatty acids in intact cells.  相似文献   
3.
4.
Although expression of liver fatty acid binding protein (L-FABP) modulates cell growth, it is not known if L-FABP also alters cell morphology and differentiation. Therefore, pluripotent embryonic stem cells were transfected with cDNA encoding L-FABP and a series of clones expressing increasing levels of L-FABP were isolated. Untransfected ES cells, as well as ES cells transfected only with empty vector, spontaneously differentiated from rounded adipocyte-like to fibroblast-like morphology, concomitant with marked reduction in expression of stage-specific embryonic antigen (SSEA-1). These changes in morphology and expression of SSEA-1 were greatest in ES cell clones expressing L-FABP above a threshold level. Immunofluorescence confocal microscopy revealed that L-FABP was primarily localized in a diffuse-cytosolic pattern along with a lesser degree of punctate L-FABP expression in the nucleus. Nuclear localization of L-FABP was preferentially increased in clones expressing higherlevels of L-FABP. In summary, L-FABP expression altered ES cell morphology and expression of SSEA-1. Taken together with the fact that L-FABP was detected in the nucleus, these data suggested that L-FABP may play a more direct, heretofore unknown, role in regulating ES cell differentiation by acting in the nucleus as well as cytoplasm.  相似文献   
5.
Although a role for liver fatty acid protein (L-FABP) in the metabolism of branched-chain fatty acids has been suggested based on data obtained with cultured cells, the physiological significance of this observation remains to be demonstrated. To address this issue, the lipid phenotype and metabolism of phytanic acid, a branched-chain fatty acid, were determined in L-FABP gene-ablated mice fed a diet with and without 1% phytol (a metabolic precursor to phytanic acid). In response to dietary phytol, L-FABP gene ablation exhibited a gender-dependent lipid phenotype. Livers of phytol-fed female L-FABP–/– mice had significantly more fatty lipid droplets than male L-FABP–/– mice, whereas in phytol-fed wild-type L-FABP+/+ mice differences between males and females were not significant. Thus L-FABP gene ablation exacerbated the accumulation of lipid droplets in phytol-fed female, but not male, mice. These results were reflected in the lipid profile, where hepatic levels of triacylglycerides in phytol-fed female L-FABP–/– mice were significantly higher than in male L-FABP–/– mice. Furthermore, livers of phytol-fed female L-FABP–/– mice exhibited more necrosis than their male counterparts, consistent with the accumulation of higher levels of phytol metabolites (phytanic acid, pristanic acid) in liver and serum, in addition to increased hepatic levels of sterol carrier protein (SCP)-x, the only known peroxisomal enzyme specifically required for branched-chain fatty acid oxidation. In summary, L-FABP gene ablation exerted a significant role, especially in female mice, in branched-chain fatty acid metabolism. These effects were only partially compensated by concomitant upregulation of SCP-x in response to L-FABP gene ablation and dietary phytol. gene targeting; phytanic acid  相似文献   
6.
Huang H  Atshaves BP  Frolov A  Kier AB  Schroeder F 《Biochemistry》2005,44(30):10282-10297
Although studies in vitro and in yeast suggest that acyl-CoA binding protein ACBP may modulate long-chain fatty acyl-CoA (LCFA-CoA) distribution, its physiological function in mammals is unresolved. To address this issue, the effect of ACBP on liver LCFA-CoA pool size, acyl chain composition, distribution, and transacylation into more complex lipids was examined in transgenic mice expressing a higher level of ACBP. While ACBP transgenic mice did not exhibit altered body or liver weight, liver LCFA-CoA pool size increased by 69%, preferentially in saturated and polyunsaturated, but not monounsaturated, LCFA-CoAs. Intracellular LCFA-CoA distribution was also altered such that the ratio of LCFA-CoA content in (membranes, organelles)/cytosol increased 2.7-fold, especially in microsomes but not mitochondria. The increased distribution of specific LCFA-CoAs to the membrane/organelle and microsomal fractions followed the same order as the relative LCFA-CoA binding affinity exhibited by murine recombinant ACBP: saturated > monounsaturated > polyunsaturated C14-C22 LCFA-CoAs. Consistent with the altered microsomal LCFA-CoA level and distribution, enzymatic activity of liver microsomal glycerol-3-phosphate acyltransferase (GPAT) increased 4-fold, liver mass of phospholipid and triacylglyceride increased nearly 2-fold, and relative content of monounsaturated C18:1 fatty acid increased 44% in liver phospholipids. These effects were not due to the ACBP transgene altering the protein levels of liver microsomal acyltransferase enzymes such as GPAT, lysophosphatidic acid acyltransferase (LAT), or acyl-CoA cholesterol acyltransferase 2 (ACAT-2). Thus, these data show for the first time in a physiological context that ACBP expression may play a role in LCFA-CoA metabolism.  相似文献   
7.
8.
9.
Although liver fatty acid binding protein (L-FABP) is postulated to influence cholesterol homeostasis, the physiological significance of this hypothesis remains to be resolved. This issue was addressed by examining the response of young (7 wk) female mice to L-FABP gene ablation and a cholesterol-rich diet. In control-fed mice, L-FABP gene ablation alone induced hepatic cholesterol accumulation (2.6-fold), increased bile acid levels, and increased body weight gain (primarily as fat tissue mass). In cholesterol-fed mice, L-FABP gene ablation further enhanced the hepatic accumulation of cholesterol (especially cholesterol ester, 12-fold) and potentiated the effects of dietary cholesterol on increased body weight gain, again mainly as fat tissue mass. However, in contrast to the effects of L-FABP gene ablation in control-fed mice, biliary levels of bile acids (as well as cholesterol and phospholipids) were reduced. These phenotypic alterations were not associated with differences in food intake. In conclusion, it was shown for the first time that L-FABP altered cholesterol metabolism and the response of female mice to dietary cholesterol. While the biliary and lipid phenotype of female wild-type L-FABP+/+ mice was sensitive to dietary cholesterol, L-FABP gene ablation dramatically enhanced many of the effects of dietary cholesterol to greatly induce hepatic cholesterol (primarily cholesterol ester) and triacylglycerol accumulation as well as to potentiate body weight gain (primarily as fat tissue mass). Taken together, these data support the hypothesis that L-FABP is involved in the physiological regulation of cholesterol metabolism, body weight gain, and obesity.  相似文献   
10.
Although the 20-amino acid presequence present in 15-kDa pro-sterol carrier protein-2 (pro-SCP-2, the precursor of the mature 13-kDa SCP-2) alters the function of SCP-2 in lipid metabolism, the molecular basis for this effect is unresolved. The presequence dramatically altered SCP-2 structure as determined by circular dichroism, mass spectroscopy, and antibody accessibility such that pro-SCP-2 had 3-fold less alpha-helix, 7-fold more beta-structure, 6-fold more reactive C terminus to carboxypeptidase A, 2-fold less binding of anti-SCP-2, and did not enhance sterol transfer from plasma membranes. These differences were not due to protein stability since (i) the same concentration of guanidine hydrochloride was required for 50% unfolding, and (ii) the ligand binding sites displayed the same high affinity (nanomolar K(d) values) in the order: cholesterol straight chain fatty acid > kinked chain fatty acid. Laser scanning confocal microscopy and double immunofluorescence demonstrated that pro-SCP-2 was more efficiently targeted to peroxisomes. Transfection of l-cells or McAR7777 hepatoma cells with cDNA encoding pro-SCP-2 resulted in 45% and 59% of SCP-2, respectively, colocalizing with the peroxisomal marker PMP70. In contrast, l-cells transfected with cDNA encoding SCP-2 exhibited 3-fold lower colocalization of SCP-2 with PMP70. In summary, the data suggest for the first time that the 20-amino acid presequence of pro-SCP-2 alters SCP-2 structure to facilitate peroxisomal targeting mediated by the C-terminal SKL peroxisomal targeting sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号