首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  1998年   2篇
  1995年   1篇
排序方式: 共有13条查询结果,搜索用时 93 毫秒
1.
Lysin is a 16kDa acrosomal protein used by abalone sperm to create a hole in the egg vitelline envelope (VE). The interaction of lysin with the VE is species-selective and is one step in the multistep fertilization process that restricts heterospecific (cross-species) fertilization. For this reason, the evolution of lysin could play a role in establishing prezygotic reproductive isolation between species. Previously, we sequenced sperm lysin cDNAs from seven California abalone species and showed that positive Darwinian selection promotes their divergence. In this paper an additional 13 lysin sequences are presented representing species from Japan, Taiwan, Australia, New Zealand, South Africa, and Europe. The total of 20 sequences represents the most extensive analysis of a fertilization protein to date. The phylogenetic analysis divides the sequences into two major clades, one composed of species from the northern Pacific (California and Japan) and the other composed of species from other parts of the world. Analysis of nucleotide substitution demonstrates that positive selection is a general process in the evolution of this fertilization protein. Analysis of nucleotide and codon usage bias shows that neither parameter can account for the robust data supporting positive selection. The selection pressure responsible for the positive selection on lysin remains unknown.   相似文献   
2.
Oral infection by Trypanosoma cruzi has been the primary cause of recent outbreaks of acute Chagas'' diseases. This route of infection may involve selective binding of the metacyclic trypomastigote surface molecule gp82 to gastric mucin as a first step towards invasion of the gastric mucosal epithelium and subsequent systemic infection. Here we addressed that question by performing in vitro and in vivo experiments. A recombinant protein containing the complete gp82 sequence (J18), a construct lacking the gp82 central domain (J18*), and 20-mer synthetic peptides based on the gp82 central domain, were used for gastric mucin binding and HeLa cell invasion assays, or for in vivo experiments. Metacyclic trypomastigotes and J18 bound to gastric mucin whereas J18* failed to bind. Parasite or J18 binding to submaxillary mucin was negligible. HeLa cell invasion by metacyclic forms was not affected by gastric mucin but was inhibited in the presence of submaxillary mucin. Of peptides tested for inhibition of J18 binding to gastric mucin, the inhibitory peptide p7 markedly reduced parasite invasion of HeLa cells in the presence of gastric mucin. Peptide p7*, with the same composition as p7 but with a scrambled sequence, had no effect. Mice fed with peptide p7 before oral infection with metacyclic forms developed lower parasitemias than mice fed with peptide p7*. Our results indicate that selective binding of gp82 to gastric mucin may direct T. cruzi metacyclic trypomastigotes to stomach mucosal epithelium in oral infection.  相似文献   
3.
Sea urchins of the genus Arbacia (order Stirodonta) have discontinuous allopatric distributions ranging over thousands of kilometers. Mitochondrial DNA (mtDNA) sequences were used to reconstruct phylogenetic relationships of four Arbacia species and their geographic populations. There is little evidence of genetic structuring of populations within species, except in two cases at range extremes. The mtDNA sequence differentiation between species suggests that divergence occurred about 4-9 MYA. Gene sequences encoding the sperm protein bindin and its intron were obtained and compared with the mtDNA phylogeny. Sea urchins among the well-studied echinoid order Camarodonta, with degrees of mtDNA divergence similar to those of Arbacia species, are known to have remarkable variation in bindin. However, in Arbacia, little variation in deduced amino acid sequences of bindin was found, indicating that purifying selection acts on the protein. In contrast, bindin intron sequences showed much differentiation, including numerous insertion/deletions. Fertilization experiments performed between a divergent pair of Arbacia species from the Atlantic and Pacific Oceans revealed no evidence of blocks to gamete recognition. In Arbacia, fertilization specificities may have evolved relatively slowly as a result of extensive gene flow within species, greater functional constraint on the bindin polypeptide, or reduced selective pressure for species recognition in singly occurring species.   相似文献   
4.
The egg jelly coats of sea urchins contain sulfated fucans which bind to a sperm surface receptor glycoprotein to initiate the signal transduction events resulting in the sperm acrosome reaction. The acrosome reaction is an ion channel regulated exocytosis which is an obligatory event for sperm binding to, and fusion with, the egg. Approximately 90% of individual females of the sea urchin Strongylocentrotus purpuratus spawned eggs having only one of two possible sulfated fucan electrophoretic isotypes, a slow migrating (sulfated fucan I), or a fast migrating (sulfated fucan II) isotype. The remaining 10% of females spawned eggs having both sulfated fucan isotypes. The two sulfated fucan isotypes were purified from egg jelly coats and their structures determined by NMR spectroscopy and methylation analysis. Both sulfated fucans are linear polysaccharides composed of 1-->3-linked alpha-L-fucopyranosyl units. Sulfated fucan I is entirely sulfated at the O -2 position but with a heterogeneous sulfation pattern at O -4 position. Sulfated fucan II is composed of a regular repeating sequence of 3 residues, as follows: [3-alpha-L-Fuc p - 2,4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)- 1]n. Both purified sulfated fucans have approximately equal potency in inducing the sperm acrosome reaction. The significance of two structurally different sulfated fucans in the egg jelly coat of this species could relate to the finding that the sperm receptor protein which binds sulfated fucan contains two carbohydrate recognition modules of the C-type lectin variety which differ by 50% in their primary structure.   相似文献   
5.
6.
Parasitic protozoa of the flagellate order Kinetoplastida represent one of the deepest branches of the eukaryotic tree. Among this group of organisms, the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser degree in Leishmania (Viannia) spp. The pathway is triggered by long double-stranded RNA (dsRNA) and in T. brucei requires a set of five core genes, including a single Argonaute (AGO) protein, T. brucei AGO1 (TbAGO1). The five genes are conserved in Leishmania (Viannia) spp. but are absent in other major kinetoplastid species, such as Trypanosoma cruzi and Leishmania major. In T. brucei small interfering RNAs (siRNAs) are methylated at the 3′ end, whereas Leishmania (Viannia) sp. siRNAs are not. Here we report that T. brucei HEN1, an ortholog of the metazoan HEN1 2′-O-methyltransferases, is required for methylation of siRNAs. Loss of TbHEN1 causes a reduction in the length of siRNAs. The shorter siRNAs in hen1−/− parasites are single stranded and associated with TbAGO1, and a subset carry a nontemplated uridine at the 3′ end. These findings support a model wherein TbHEN1 methylates siRNA 3′ ends after they are loaded into TbAGO1 and this methylation protects siRNAs from uridylation and 3′ trimming. Moreover, expression of TbHEN1 in Leishmania (Viannia) panamensis did not result in siRNA 3′ end methylation, further emphasizing mechanistic differences in the trypanosome and Leishmania RNAi mechanisms.  相似文献   
7.
8.
The target cell F-actin disassembly, induced by a Ca2+-signaling Trypanosoma cruzi factor of unknown molecular identity, has been reported to promote parasite invasion. We investigated whether the metacyclic trypomastigote stage-specific surface molecule gp82, a Ca2+-signal-inducing molecule implicated in host cell invasion, displayed the ability to induce actin cytoskeleton disruption, using a recombinant protein (J18) containing the full-length gp82 sequence fused to GST. J18, but not GST, induced F-actin disassembly in HeLa cells, significantly reducing the number as well as the length of stress fibers. The number of cells with typical stress fibers scored approximately 70% in untreated and GST-treated cells, as opposed to approximately 30% in J18-treated samples, which also showed decreased F-actin content. J18, but not GST, inhibited approximately 6-fold the HeLa cell entry of enteroinvasive Escherichia coli (EIEC), which depends on actin cytoskeleton. Not only were fewer cells infected with bacteria in the presence of J18, there were also fewer bacteria per cell. The inhibitory activity of J18 was Ca2+ dependent. In co-infection experiments, preincubation of HeLa cells with EIEC drastically reduced gp82-dependent internalization of T. cruzi metacyclic forms. All these data, plus the finding that gp82-mediated penetration of metacyclic forms was associated with disrupted HeLa cell cytoskeletal architecture, indicate that gp82 promotes parasite invasion by disassembling the cortical actin cytoskeleton.  相似文献   
9.
In the present study, the antifungal activity of selected essential oils obtained from plants used as spices was evaluated against both fluconazole-resistant and fluconazole-susceptible Candida spp. The Candida species studied were Candida albicans, Candida dubliniensis, Candida tropicalis, Candida glabrata, and Candida krusei. For comparison purposes, they were arranged in groups as C. albicans, C. dubliniensis, and Candida non-albicans. The essential oils were obtained from Cinnamomum zeylanicum Breyn, Lippia graveolens HBK, Ocimum basilicum L., Origanum vulgare L., Rosmarinus officinalis L., Salvia officinalis L., Thymus vulgaris L., and Zingiber officinale. The susceptibility tests were based on the M27-A2 methodology. The chemical composition of the essential oils was obtained by gas chromatography-mass spectroscopy and by retention indices. The results showed that cinnamon, Mexican oregano, oregano, thyme, and ginger essential oils have different levels of antifungal activity. Oregano and ginger essential oils were found to be the most and the least efficient, respectively. The main finding was that the susceptibilities of fluconazole-resistant C. albicans, C. dubliniensis, and Candida non-albicans to Mexican oregano, oregano, thyme, and ginger essential oils were higher than those of the fluconazole-susceptible yeasts (P<0.05). In contrast, fluconazole-resistant C. albicans and Candida non-albicans were less susceptible to cinnamon essential oil than their fluconazole-susceptible counterparts (P<0.05). A relationship between the yeasts' susceptibilities and the chemical composition of the essential oils studied was apparent when these 2 parameters were compared. Finally, basil, rosemary, and sage essential oils did not show antifungal activity against Candida isolates at the tested concentrations.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号