首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2008年   1篇
  2003年   1篇
  2002年   1篇
  1986年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The endocrine and gametogenic status of the testes were studied in 9 healthy adult rhesus monkeys of proven fertility throughout a one-year period. Testosterone levels were estimated by radioimmunoassay in blood samples collected at 4 h intervals over a 24 h period once a month. Semen samples and testicular biopsies were also examined once a month. A well-defined circandian rhythm was evident in serum levels of testosterone. The rhythmicity was less pronounced in February and September. The 24 h mean levels of serum testosterone were high between the months of August to March and low in the months of May to July. All animals did not uniformly respond to electro-ejaculation in April and May. Semen volume and total number of spermatozoa were maximal between September and March and least from April to August. Testicular biopsies indicated that all stages of spermatogenesis were evident between September and March and the spermatogenic activity was less evident between April and August. The contents of Sertoli cells showed a seasonal cyclicity; they were laden with lipid droplets during April to August when spermatogenesis was quiescent and vacuolated during September to March when spermatogenesis was active. These studies indicate that the testing of contraceptive drugs needs to be restricted to months of September to March in male rhesus monkeys otherwise, it is possible that the naturally occurring reproductive quiscence may be attributed to the effect of the drug being tested. The data accrued from the present studies also provide quantitative information on circulating levels of testosterone which could be used as a reference background while evaluating the contraceptive drug-effects in male rhesus monkeys.  相似文献   
2.
To determine whether oxymetholone increases lean body mass (LBM) and skeletal muscle strength in older persons, 31 men 65-80 yr of age were randomized to placebo (group 1) or 50 mg (group 2) or 100 mg (group 3) daily for 12 wk. For the three groups, total LBM increased by 0.0 +/- 0.6, 3.3 +/- 1.2 (P < 0.001), and 4.2 +/- 2.4 kg (P < 0.001), respectively. Trunk fat decreased by 0.2 +/- 0.4, 1.7 +/- 1.0 (P = 0.018), and 2.2 +/- 0.9 kg (P = 0.005) in groups 1, 2, and 3, respectively. Relative increases in 1-repetition maximum (1-RM) strength for biaxial chest press of 8.2 +/- 9.2 and 13.9 +/- 8.1% in the two active treatment groups were significantly different from the change (-0.8 +/- 4.3%) for the placebo group (P < 0.03). For lat pull-down, 1-RM changed by -0.6 +/- 8.3, 8.8 +/- 15.1, and 18.4 +/- 21.0% for the groups, respectively (1-way ANOVA, P = 0.019). The pattern of changes among the groups for LBM and upper-body strength suggested that changes might be related to dose. Alanine aminotransferase increased by 72 +/- 67 U/l in group 3 (P < 0.001), and HDL-cholesterol decreased by -19 +/- 9 and -23 +/- 18 mg/dl in groups 2 and 3, respectively (P = 0.04 and P = 0.008). Thus oxymetholone improved LBM and maximal voluntary muscle strength and decreased fat mass in older men.  相似文献   
3.
Administration of replacement doses of testosterone to healthy hypogonadal men and supraphysiological doses to eugonadal men increases muscle size. To determine whether testosterone-induced increase in muscle size is due to muscle fiber hypertrophy, 61 healthy men, 18-35 yr of age, received monthly injections of a long-acting gonadotropin-releasing hormone (GnRH) agonist to suppress endogenous testosterone secretion and weekly injections of 25, 50, 125, 300, or 600 mg testosterone enanthate (TE) for 20 wk. Thigh muscle volume was measured by magnetic resonance imaging (MRI) scan, and muscle biopsies were obtained from vastus lateralis muscle in 39 men before and after 20 wk of combined treatment with GnRH agonist and testosterone. Administration of GnRH agonist plus TE resulted in mean nadir testosterone concentrations of 234, 289, 695, 1,344, and 2,435 ng/dl at the 25-, 50-, 125-, 300-, and 600-mg doses, respectively. Graded doses of testosterone administration were associated with testosterone dose and concentration-dependent increase in muscle volume measured by MRI (changes in vastus lateralis volume, -4, +7, +15, +32, and +48 ml at 25-, 50-, 125-, 300-, and 600-mg doses, respectively). Changes in cross-sectional areas of both type I and II fibers were dependent on testosterone dose and significantly correlated with total (r = 0.35, and 0.44, P < 0.0001 for type I and II fibers, respectively) and free (r = 0.34 and 0.35, P < 0.005) testosterone concentrations during treatment. The men receiving 300 and 600 mg of TE weekly experienced significant increases from baseline in areas of type I (baseline vs. 20 wk, 3,176 +/- 186 vs. 4,201 +/- 252 microm(2), P < 0.05 at 300-mg dose, and 3,347 +/- 253 vs. 4,984 +/- 374 microm(2), P = 0.006 at 600-mg dose) muscle fibers; the men in the 600-mg group also had significant increments in cross-sectional area of type II (4,060 +/- 401 vs. 5,526 +/- 544 microm(2), P = 0.03) fibers. The relative proportions of type I and type II fibers did not change significantly after treatment in any group. The myonuclear number per fiber increased significantly in men receiving the 300- and 600-mg doses of TE and was significantly correlated with testosterone concentration and muscle fiber cross-sectional area. In conclusion, the increases in muscle volume in healthy eugonadal men treated with graded doses of testosterone are associated with concentration-dependent increases in cross-sectional areas of both type I and type II muscle fibers and myonuclear number. We conclude that the testosterone induced increase in muscle volume is due to muscle fiber hypertrophy.  相似文献   
4.
Testosterone increases fat-free mass (FFM) in men infected with human immunodeficiency virus (HIV), but its effects on muscle performance, physical function, mood, and quality of life are poorly understood. Sixty-one HIV-infected men with weight loss were randomized to receive weekly intramuscular injections of 300 mg of testosterone enanthate or placebo for 16 wk. The primary outcome of interest was physical function (walking speed, stair-climbing power, and load-carrying ability). Secondary outcome measures included body weight and composition, muscle performance, sexual function, mood, and quality of life. Serum nadir free and total testosterone levels increased (+188.0 +/- 29.6 and +720 +/- 86 ng/dl) in the testosterone, but not placebo, group. Testosterone administration was associated with increased FFM (2.8 +/- 0.5 kg), which was significantly greater than in the placebo group (P < 0.0001). Leg press strength increased significantly in testosterone-treated (P = 0.027), but not placebo-treated, men; the difference between groups was not significant. Other measures of muscle performance and physical function did not change significantly in either group. Men receiving testosterone demonstrated significantly greater improvements in mental health and quality-of-life scores than those receiving placebo and improvements in fatigue/energy and mood scores that were not significantly different from those receiving placebo. Sexual function scores did not change in either group. In HIV-infected men with weight loss, a supraphysiological dose of testosterone significantly increased FFM but did not improve self-reported or performance-based measures of physical function. Improvements in mood, fatigue, and quality-of-life measures in the testosterone group, although clinically important, need further confirmation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号