首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   8篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   7篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2000年   2篇
  1998年   2篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
Cancer is a leading cause of death and alterations of glycosylation are characteristic features of malignant cells. Colorectal cancer is one of the most common cancers and its exact causes and biology are not yet well understood. Here, we compared glycosylation profiles of colorectal tumor tissues and corresponding control tissues of 13 colorectal cancer patients to contribute to the understanding of this cancer. Using MALDI-TOF(/TOF)-MS and 2-dimensional LC-MS/MS we characterized enzymatically released and 2-aminobenzoic acid labeled glycans from glycosphingolipids. Multivariate data analysis revealed significant differences between tumor and corresponding control tissues. Main discriminators were obtained, which represent the overall alteration in glycosylation of glycosphingolipids during colorectal cancer progression, and these were found to be characterized by (1) increased fucosylation, (2) decreased acetylation, (3) decreased sulfation, (4) reduced expression of globo-type glycans, as well as (5) disialyl gangliosides. The findings of our current research confirm former reports, and in addition expand the knowledge of glycosphingolipid glycosylation in colorectal cancer by revealing new glycans with discriminative power and characteristic, cancer-associated glycosylation alterations. The obtained discriminating glycans can contribute to progress the discovery of biomarkers to improve diagnostics and patient treatment.Worldwide, cancer is a leading cause of death. With estimated 1.2 million diagnoses in 2008, colorectal cancer is the third most common cancer in the world and the fourth most common cause of death with an annual mortality of ∼600 000 (1). The exact causes of colorectal cancer are unknown, but different risk factors such as age, polyps, personal and family history, ulcerative colitis, or Crohn''s colitis have been proposed (2). Standard screening procedures include flexible sigmoidoscopy, colonoscopy, and immunological fecal occult blood testing. Each of them has its advantages and drawbacks such as invasiveness or low sensitivity and specificity (3). The method of choice for the treatment of colorectal cancer is surgery and therapeutic decisions are based on the tumor, lymph node, and metastasis staging-system as a prognostic factor (4). Current research has led to improved treatment strategies of colorectal cancer, however, the clinical outcome, the progression of the disease, and the response to the treatment remain variable among individuals. The heterogeneity of colorectal cancer at the molecular level—caused by accumulation of multiple genetic changes—may be one of the main reasons for this variability (5). Genetic factors such as instabilities, but also expression levels (6) can explain part of the cancer biology, but glycomics is gaining importance to complement the overall picture as aberrant glycosylation of proteins and lipids has been shown to be correlated with disease and malignancy (7, 8).Glycosylation is involved in many biological processes and especially its functional role in cellular interaction with respect to adhesion, cell growth, and signaling is prone to be affected in cancer progression, invasion, and metastasis (9). Several cancer-associated alterations in protein glycosylation have been reported: (1) increased branching of N-glycans, (2) higher density of O-glycans, and (3) incomplete synthesis of glycans. More particularly, an increased or induced expression of GlcNAc transferase V resulting in N-glycan structures with β1–6GlcNAc antennae (5, 10), and the expression of (sialyl) Tn-antigens (11) as aberrant O-glycosylation have been reported (10).Altered glycosphingolipid (GSL)1 glycosylation of the cell surface membrane during malignancy can affect cell recognition, adhesion, and signal transduction (12) and is found to reflect: (1) incomplete synthesis with or without precursor accumulation, (2) neosynthesis (9), (3) increased sialylation, and (4) increased fucosylation (13). In many cancers, including colorectal cancer, an overexpression of the (sialyl) Lewis X antigen (10, 14) and the expression of (sialyl) Lewis A (15) are considered to be related to malignant transformation—reflecting incomplete synthesis of sialyl 6-sulfo Lewis X and disialyl Lewis A (16) as well as neosynthesis (17). Studies on gangliosides showed an overexpression of these sialylated GSLs in human malignant melanoma (18). Furthermore, the involvement of gangliosides in cell adhesion and motility was reported, which contributes to tumor metastasis (19). Specifically, the gangliosides GD3 (Hex2NeuAc2ceramide) and GM2 (Hex2HexNAc1NeuAc1ceramide) have been found to be associated with tumor-angiogenesis (19). The up-regulation of fucosyltransferases in cancer was shown to cause a higher degree of fucosylation in malignant tissues (20) and Moriwaki et al. proposed that the increase in the fucosylation for GSLs was an early event in cancer (21). Misonou et al. investigated glycans derived from GSLs in colorectal cancer tissues showing aberrant glycan structures based on linkage differences as well as increased sialylation and fucosylation compared with control tissue (22), which is in line with observed changes in GSL glycosylation with regard to cancer progression (9, 13).Recently, we investigated the N-glycosylation profiles of colorectal tumors and correlating control tissues for biomarker discovery. Statistical analyses revealed an increase of sulfated glycan structures as well as paucimannosidic glycans and glycans containing sialylated Lewis type epitopes in the tumor tissue, whereas structures with bisecting GlcNAc were found to be decreased in malignancy (23). To further progress the understanding of colorectal cancer biology and the improvement of diagnostic tools and patient treatment, we complemented this recent study on N-glycosylation by an investigation of the glycosphingolipid-derived glycans (named GSL-glycans in the following) from frozen tumor tissues and corresponding control tissues from the same 13 colorectal cancer patients. GSL-glycans were enzymatically released, labeled with 2-aminobenzoic acid (AA) and analyzed by hydrophilic interaction liquid chromatography (HILIC) with fluorescence detection as well as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Employing multivariate statistical analysis, this approach revealed an intricate GSL-glycosylation pattern of tumor tissues and specific glycosylation differences in comparison to the corresponding control tissue.  相似文献   
2.
Staphylococcus aureus is a major human pathogen, first recognized as a leading cause of hospital-acquired infections. Community-associated S. aureus (CA-SA) pose a greater threat due to increase in severity of infection and disease among children and healthy adults. CA-SA strains in India are genetically diverse, among which is the sequence type (ST) 772, which has now spread to Australia, Europe and Japan. Towards understanding the genetic characteristics of ST772, we obtained draft genome sequences of five relevant clinical isolates and studied the properties of their PVL-carrying prophages, whose presence is a defining hallmark of CA-SA. We show that this is a novel prophage, which carries the structural genes of the hlb-carrying prophage and includes the sea enterotoxin. This architecture probably emerged early within the ST772 lineage, at least in India. The sea gene, unique to ST772 PVL, despite having promoter sequence characteristics typical of low expression, appears to be highly expressed during early phase of growth in laboratory conditions. We speculate that this might be a consequence of its novel sequence context. The crippled nature of the hlb-converting prophage in ST772 suggests that widespread mobility of the sea enterotoxin might be a selective force behind its ‘transfer’ to the PVL prophage. Wild type ST772 strains induced strong proliferative responses as well as high cytotoxic activity against neutrophils, likely mediated by superantigen SEA and the PVL toxin respectively. Both proliferation and cytotoxicity were markedly reduced in a cured ST772 strain indicating the impact of the phage on virulence. The presence of SEA alongside the genes for the immune system-modulating PVL toxin may contribute to the success and virulence of ST772.  相似文献   
3.
4.
Osteoprotegerin Ligand (OPGL) is a member of the tumor necrosis factor ligand superfamily and has been shown to be involved in interactions between T cells and dendritic cells. Its role in monocyte effector function, however, has not been defined. In the present study a role for OPGL in activating monocytes/macrophages has been characterized. OPGL was found to up-regulate receptor activator of NF-kappaB (RANK) receptor expression on monocytes, regulate their effector function by inducing cytokine and chemokine secretion, activate antigen presentation through up-regulation of co-stimulatory molecule expression, and promote survival. This activation is mediated through the MAPK pathway as evidenced by activation of p38 and p42/44 MAPK and up-regulation of BCL-XL protein levels. A physiological role for OPGL in monocyte activation and effector function was tested in a model of lipopolysaccharide-induced endotoxic shock. Administration of receptor activator of NF-kappaB (RANK)-Fc to block OPGL activity in vivo was able to protect mice from death induced by sepsis, indicating a hitherto undescribed role for OPGL in monocyte function and in mediating inflammatory response. This was further tested in an animal model of inflammation-mediated arthritis. Treatment with RANK-Fc significantly ameliorated disease development and attenuated bone destruction. Thus, our study strongly suggests that administration of receptor fusion proteins to specifically block OPGL activity in vivo may result in blocking development of monocyte/macrophage-mediated diseases.  相似文献   
5.
6.
The phosphoesterase (PE) domain of the bacterial DNA repair enzyme LigD possesses distinctive manganese-dependent 3′-phosphomonoesterase and 3′-phosphodiesterase activities. PE exemplifies a new family of DNA end-healing enzymes found in all phylogenetic domains. Here, we determined the structure of the PE domain of Pseudomonas aeruginosa LigD (PaePE) using solution NMR methodology. PaePE has a disordered N-terminus and a well-folded core that differs in instructive ways from the crystal structure of a PaePE•Mn2+• sulfate complex, especially at the active site that is found to be conformationally dynamic. Chemical shift perturbations in the presence of primer-template duplexes with 3′-deoxynucleotide, 3′-deoxynucleotide 3′-phosphate, or 3′ ribonucleotide termini reveal the surface used by PaePE to bind substrate DNA and suggest a more efficient engagement in the presence of a 3′-ribonucleotide. Spectral perturbations measured in the presence of weakly catalytic (Cd2+) and inhibitory (Zn2+) metals provide evidence for significant conformational changes at and near the active site, compared to the relatively modest changes elicited by Mn2+.  相似文献   
7.
Hypothalamic hamartomas (HH) are rare, benign congenital tumors associated with intractable epilepsy. Most cases are sporadic and nonsyndromic. Approximately 5% of HH cases are associated with Pallister-Hall syndrome (PHS), which is caused by haploinsufficiency of GLI3. We have investigated the possibility that HH pathogenesis in sporadic cases is due to a somatic (tumor-only) mutation in GLI3. We isolated genomic DNA from peripheral blood and surgically resected HH tissue in 55 patients with sporadic HH and intractable epilepsy. A genome-wide screen for loss of heterozygosity (LOH) and chromosomal abnormalities was performed with parallel analysis of blood and HH tissue with Affymetrix 10K SNP microarrays. Additionally, resequencing and fine mapping with SNP genotyping were completed for the GLI3 gene with comparisons between peripheral blood and HH tissue pairs. By analyzing chromosomal copy-number data for paired samples on the Affymetrix 10K array, we identified a somatic chromosomal abnormality on chromosome 7p in one HH tissue sample. Resequencing of GLI3 did not identify causative germline mutations but did identify LOH within the GLI3 gene in the HH tissue samples of three patients. Further genotyping of 28 SNPs within and surrounding GLI3 identified five additional patients exhibiting LOH. Together, these data provide evidence that the development of chromosomal abnormalities within GLI3 is associated with the pathogenesis of HH lesions in sporadic, nonsyndromic patients with HH and intractable epilepsy. Chromosomal abnormalities including the GLI3 locus were seen in 8 of 55 (15%) of the resected HH tissue samples. These somatic mutations appear to be highly variable.  相似文献   
8.
Poly(ADP-ribosyl)ation (PARylation) is a multifaceted post-translational modification, carried out by poly(ADP-ribosyl)transferases (poly-ARTs, PARPs), which play essential roles in (patho-) physiology, as well as cancer therapy. Using NAD+ as a substrate, acceptors, such as proteins and nucleic acids, can be modified with either single ADP-ribose units or polymers, varying considerably in length and branching. Recently, the importance of PAR structural heterogeneity with regards to chain length and branching came into focus. Here, we provide a concise overview on the current knowledge of the biochemical and physiological significance of such differently structured PAR. There is increasing evidence revealing that PAR’s structural diversity influences the binding characteristics of its readers, PAR catabolism, and the dynamics of biomolecular condensates. Thereby, it shapes various cellular processes, such as DNA damage response and cell cycle regulation. Contrary to the knowledge on the consequences of PAR’s structural diversity, insight into its determinants is just emerging, pointing to specific roles of different PARP members and accessory factors. In the future, it will be interesting to study the interplay with other post-translational modifications, the contribution of natural PARP variants, and the regulatory role of accessory molecules. This has the exciting potential for new therapeutic approaches, with the targeted modulation and tuning of PARPs’ enzymatic functions, rather than their complete inhibition, as a central premise.  相似文献   
9.
We report the draft genome sequence of methicillin-resistant Staphylococcus aureus (MRSA) strain ST672, an emerging disease clone in India, from a septicemia patient. The genome size is about 2.82 Mb with 2,485 open reading frames (ORFs). The staphylococcal cassette chromosome mec (SCCmec) element (type V) and immune evasion cluster appear to be different from those of strain ST772 on preliminary examination.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号