首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   9篇
  148篇
  2022年   1篇
  2021年   5篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   17篇
  2011年   10篇
  2010年   7篇
  2009年   9篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   4篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有148条查询结果,搜索用时 0 毫秒
1.
The molybdenum requirement for growth and conidial formation by Aspergillus flavus, A. terreus, and A. sulphureus was found to be 0.2 ppb, which was one-fifth that of an A. niger isolate. Molybdenum deficiency depressed growth, conidial formation, dry weight, soluble protein, and the specific activities of nitrate reductase, succinic dehydrogenase, and aconitase in all the isolates of Aspergillus studied, but the specific activities of catalase and peroxidase were depressed only in isolates of A. niger, A. terreus, and A. flavus. Also, molybdenum deficiency stimulated the specific activities of acid phosphatase and ribonuclease in the A. flavus isolate, although the specific activities of these enzymes decreased in other isolates. Eighteen hours after the addition of molybdenum (5 ppb) to molybdenum-deficient (0.02 ppb) cultures of A. niger, the specific activities of catalase, peroxidase and succinic dehydrogenase were restored in the absence of cycloheximide, while the specific activity of nitrate reductase was recovered even in the presence of the inhibitor. There was no effect on the specific activities of aconitase and acid phosphatase following the addition of molybdenum to molybdenum-deficient cultures of A. niger.  相似文献   
2.
The responses of seedlings of three fast growing tree species,Eucalyptus hybrid(E. camaldulensis × E. teriticornis), Casuarina equisetifolia andMelia azedarach, to different levels of soil moisture in controlled glasshouse conditions were compared. The survival percentage, height of plants, number of leaves per plant, number of branches, fresh mass and dry mass of roots, stems, branches and leaves decreased in the three species with increasing water stress. Stomatal frequency and length of stomata inEucalyptus andMelia also decreased with increasing water stress. However, no significant difference was obtained in the width of stomata and the ratio of number of open stomata to total number of stomata per unit area. The leaf thickness decreased, but the thickness of palisade parenchyma increased with increasing water stress inEucalyptus hybrid andCasuarina. Leaf thickness ofMelia did not show any significant variation due to water stress.  相似文献   
3.
Glutamine synthetase I fromRhizobium meliloti was found to be inhibited by adenosine 5-monophosphate, alanine, glycine, carbamyl phosphate, cytidine 5-triphosphate, tryptophan, histidine, and glucosamine-6-phosphate. Each inhibitor was independent in its action and the effect was cumulative when more than one inhibitor was added.  相似文献   
4.
Two nopaline-type strains of Agrobacterium tumefaciens, C58 and T37, as well as strain A136, which is a Ti plasmid-cured derivative of strain C58, gave rise to spontaneous mutants that were able to grow on mannopine. The observation of mutagenesis with strain A136 demonstrated that the ability to acquire this new catabolic potential was independent of the presence of a Ti plasmid. The mutants were isolated after 4 weeks of incubation on minimal medium containing mannopine as the sole carbon source. They also utilized mannopinic acid, but not agropine or agropinic acid. In addition, the spontaneous mutant LM136, but not its parent strain A136, degraded many mannityl opine analogs. [14C]mannopine disappeared in the presence of LM136 cells which had been pregrown on opine or nonopine substrates. These results suggested that the catabolic system of this mutant was not subject to a stringent regulation. A clone conferring the ability to utilize mannopine on a recipient pseudomonad was selected from a genomic library from both the mutant LM136 and its parent strain. Only the LM136 clone was expressed in the parent Agrobacterium strain A136. Southern analysis showed that the genes for mannopine catabolism in the spontaneous mutants differed from the corresponding Ti plasmid-encoded genes of octopine-type or agropine-type Agrobacterium strains. Cells of LM136 utilized [14C]mannopine without generating detectable amounts of intracellular agropine. In contrast, a major fraction of the radioactivity recovered from cells of the octopine-type strain Ach5, after incubation on [14C]mannopine, was in the form of agropine.  相似文献   
5.
6.
Genome wide quantitative trait loci (QTL) mapping was conducted in Arabidopsis thaliana using F2 mapping population (Col-0 × Don-0) and SNPs markers. A total of five linkage groups were obtained with number of SNPs varying from 45 to 59 per linkage group. The composite interval mapping detected a total of 36 QTLs for 15 traits and the number of QTLs ranged from one (root length, root dry biomass, cauline leaf width, number of internodes and internode distance) to seven (for bolting days). The range of phenotypic variance explained (PVE) and logarithm of the odds ratio of these 36 QTLs was found be 0.19–38.17% and 3.0–6.26 respectively. Further, the epistatic interaction detected one main effect QTL and four epistatic QTLs. Five major QTLs viz. Qbd.nbri.4.3, Qfd.nbri.4.2, Qrdm.nbri.5.1, Qncl.nbri.2.2, Qtd.nbri.4.1 with PVE > 15.0% might be useful for fine mapping to identify genes associated with respective traits, and also for development of specialized population through marker assisted selection. The identification of additive and dominant effect QTLs and desirable alleles of each of above mentioned traits would also be important for future research.  相似文献   
7.

Background

Extracellular matrix (ECM) remodeling facilitates biomechanical signals in response to abnormal physiological conditions. This process is witnessed as one of the major effects of the stress imposed by catecholamines, such as epinephrine and norepinephrine (NE), on cardiac muscle cells. Matrix metalloproteinases (MMPs) are the key proteases involved in degradation of the ECM in heart.

Objectives

The present study focuses on studying the effect of curcumin on Gelatinase B (MMP-9), an ECM remodeling regulatory enzyme, in NE-induced cardiac stress. Curcumin, a bioactive polyphenol found in the spice turmeric, has been studied for its multi-fold beneficial properties. This study focuses on investigating the role of curcumin as a cardio-protectant.

Methods

H9c2 cardiomyocytes were subjected to NE and curcumin treatments to study the response in stress conditions. Effect on total collagen content was studied using Picrosirus red staining. Gelatinase B activity was assessed through Gel-Diffusion Assay and Zymographic techniques. RT-PCR, Western Blotting and Immunocytochemistry were performed to study effect on expression of gelatinase B. Further, the effect of curcumin on the localization of NF-κB, known to regulate gelatinase B, was also examined.

Results

Curcumin suppressed the increase in the total collagen content under hypertrophic stress and was found to inhibit the in-gel and in-situ gelatinolytic activity of gelatinase B. Moreover, it was found to suppress the mRNA and protein expression of gelatinase B.

Conclusions

The study provides an evidence for an overall inhibitory effect of curcumin on Gelatinase B in NE-induced hypertrophic stress in H9c2 cardiomyocytes which may contribute in the prevention of ECM remodeling.  相似文献   
8.
Dormancy-breaking and seed germination studies in genus Lilium reveal that the majority of Lilium spp. studied have an underdeveloped embryo at maturity, which grows inside the seed before the radicle emerges. Additionally, the embryo, radicle or cotyledon has a physiological component of dormancy; thus, Lilium seeds have morphophysiological dormancy (MPD). A previous study suggested that seeds of Lilium polyphyllum have MPD but the study did not investigate the development of the embryo, which is one of the main criteria to determine MPD in seeds. To test this hypothesis, we investigated embryo growth and emergence of radicles and epicotyls in seeds over a range of temperatures. At maturity, seeds had underdeveloped embryos which developed fully at warm temperature within 6 weeks. Immediately after embryo growth, radicles also emerged at warm temperatures. However, epicotyls failed to emerge soon after radicle emergence. Epicotyls emerged from >90% seeds with an emerged radicle only after they were subjected to 2 weeks of cold moist stratification. The overall temperature requirements for dormancy-breaking and seed germination indicate a non-deep simple epicotyl MPD in L. polyphyllum.  相似文献   
9.
The field of allelopathy is one of the most fascinating but controversial processes in plant ecology that offers an exciting, interdisciplinary, complex, and challenging study. In spite of the established role of soil microbes in plant health, their role has also been consolidated in studies of allelopathy. Moreover, allelopathy can be better understood by incorporating soil microbial ecology that determines the relevance of allelopathy phenomenon. Therefore, while discussing the role of allelochemicals in plant–plant interactions, the dynamic nature of soil microbes should not be overlooked. The occurrence and toxicity of allelochemicals in soil depend on various factors, but the type of microflora in the surroundings plays a crucial role because it can interfere with its allelopathic nature. Such microbes could be of prime importance for biological control management of weeds reducing the cost and ill effects of chemical herbicides. Among microbes, our main focus is on bacteria—as they are dominant among other microbes and are being used for enhancing crop production for decades—and fungi. Hence, to refer to both bacteria and fungi, we have used the term microbes. This review discusses the beneficial role of microbes in reducing the allelopathic effects of weeds. The review is mainly focused on various functions of bacteria in (1) reducing allelopathic inhibition caused by weeds to reduce crop yield loss, (2) building inherent defense capacity in plants against allelopathic weed, and (3) deciphering beneficial rhizospheric process such as chemotaxis/biofilm, degradation of toxic allelochemicals, and induced gene expression.  相似文献   
10.
Interaction of HIV-1 rev response element (RRE) RNA with its cognate protein, Rev, is critical for HIV-1 replication. Understanding the mode of interaction between RRE RNA and ligands at the binding site can facilitate RNA molecular recognition as well as provide a strategy for developing anti-HIV therapeutics. Our approach utilizes branched peptides as a scaffold for multivalent binding to RRE IIB (high affinity rev binding site) with incorporation of unnatural amino acids to increase affinity via non-canonical interactions with the RNA. Previous high throughput screening of a 46,656-member library revealed several hits that bound RRE IIB RNA in the sub-micromolar range. In particular, the lead compound, 4B3, displayed a Kd value of 410?nM and demonstrated selectivity towards RRE. A ribonuclease protection assay revealed that 4B3 binds to the stem-loop structure of RRE IIB RNA, which was confirmed by SHAPE analysis with 234 nt long NL4-3 RRE RNA. Our studies further indicated interaction of 4B3 with both primary and secondary Rev binding sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号