首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2023年   1篇
  2021年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 609 毫秒
1
1.
2.
3.
Orofacial clefting: recent insights into a complex trait   总被引:20,自引:0,他引:20  
Orofacial clefts are common birth defects of multifactorial etiology. Several novel approaches have recently been applied to investigate the causes of clefts. These include examining Mendelian forms of clefting to identify genes that might also be implicated in isolated clefting, analyzing chromosomal rearrangements in which clefting is part of the resultant phenotype, studying animal models in which clefts arise either spontaneously or as a result of mutagenesis experiments, exploring how expression patterns correlate with gene function and examining the effects of gene-environment interactions. Together, these complementary strategies are providing researchers with new clues as to what mechanisms underlie orofacial clefting.  相似文献   
4.
5.

Background

Facial clefts are common birth defects with a strong genetic component. To identify fetal genetic risk factors for clefting, 1536 SNPs in 357 candidate genes were genotyped in two population-based samples from Scandinavia (Norway: 562 case-parent and 592 control-parent triads; Denmark: 235 case-parent triads).

Methodology/Principal Findings

We used two complementary statistical methods, TRIMM and HAPLIN, to look for associations across these two national samples. TRIMM tests for association in each gene by using multi-SNP genotypes from case-parent triads directly without the need to infer haplotypes. HAPLIN on the other hand estimates the full haplotype distribution over a set of SNPs and estimates relative risks associated with each haplotype. For isolated cleft lip with or without cleft palate (I-CL/P), TRIMM and HAPLIN both identified significant associations with IRF6 and ADH1C in both populations, but only HAPLIN found an association with FGF12. For isolated cleft palate (I-CP), TRIMM found associations with ALX3, MKX, and PDGFC in both populations, but only the association with PDGFC was identified by HAPLIN. In addition, HAPLIN identified an association with ETV5 that was not detected by TRIMM.

Conclusion/Significance

Strong associations with seven genes were replicated in the Scandinavian samples and our approach effectively replicated the strongest previously known association in clefting—with IRF6. Based on two national cleft cohorts of similar ancestry, two robust statistical methods and a large panel of SNPs in the most promising cleft candidate genes to date, this study identified a previously unknown association with clefting for ADH1C and provides additional candidates and analytic approaches to advance the field.  相似文献   
6.

Background

Fetal conditions can in principle be affected by the mother''s genotype working through the prenatal environment.

Methodology/Principal Findings

Genotypes for 1536 SNPs in 357 cleft candidate genes were available from a previous analysis in which we focused on fetal gene effects [1]. After data-cleaning, genotypes for 1315 SNPs in 334 autosomal genes were available for the current analysis of maternal gene effects. Two complementary statistical methods, TRIMM and HAPLIN, were used to detect multi-marker effects in population-based samples from Norway (562 case-parent and 592 control-parent triads) and Denmark (235 case-parent triads). We analyzed isolated cleft lip with or without cleft palate (iCL/P) and isolated cleft palate only (iCP) separately and assessed replication by looking for genes detected in both populations by both methods. In iCL/P, neither TRIMM nor HAPLIN detected more genes than expected by chance alone; furthermore, the selected genes were not replicated across the two methods. In iCP, however, FLNB was identified by both methods in both populations. Although HIC1 and ZNF189 did not fully satisfy our stringency criterion for replication, they were strongly associated with iCP in TRIMM analyses of the Norwegian triads.

Conclusion/Significance

Except for FLNB, HIC1 and ZNF189, maternal genes did not appear to influence the risk of clefting in our data. This is consistent with recent epidemiological findings showing no apparent difference between mother-to-offspring and father-to-offspring recurrence of clefts in these two populations. It is likely that fetal genes make the major genetic contribution to clefting risk in these populations, but we cannot rule out the possibility that maternal genes can affect risk through interactions with specific teratogens or fetal genes.  相似文献   
7.

Background

Recent epidemiological studies suggest that the maternal genome is an important contributor to spontaneous preterm delivery (PTD). There is also a significant excess of males among preterm born infants, which may imply an X-linked mode of inheritance for a subset of cases. To explore this, we examined the effect of maternal and fetal X-chromosomal single nucleotide polymorphisms (SNPs) on the risk of PTD in two independent genome-wide association studies and one replication study.

Methods

Participants were recruited from the Danish National Birth Cohort and the Norwegian Mother and Child cohort studies. Data from these two populations were first analyzed independently, and then combined in a meta-analysis. Overall, we evaluated 12,211 SNPs in 1,535 case-mother dyads and 1,487 control-mother dyads. Analyses were done using a hybrid design that combines case-mother dyads and control-mother dyads, as implemented in the Haplin statistical software package. A sex-stratified analysis was performed for the fetal SNPs. In the replication study, 10 maternal and 16 fetal SNPs were analyzed using case-parent triads from independent studies of PTD in the United States, Argentina and Denmark.

Results

In the meta-analysis, the G allele at the maternal SNP rs2747022 in the FERM domain containing 7 gene (FRMD7) increased the risk of spontaneous PTD by 1.2 (95% confidence interval (CI): 1.1, 1.4). Although an association with this SNP was confirmed in the replication study, it was no longer statistically significant after a Bonferroni correction for multiple testing.

Conclusion

We did not find strong evidence in our data to implicate X-chromosomal SNPs in the etiology of spontaneous PTD. Although non-significant after correction for multiple testing, the mother’s G allele at rs2747022 in FRMD7 increased the risk of spontaneous PTD across all populations in this study, thus warranting further investigation in other populations.  相似文献   
8.
9.

Background

Mitochondrial DNA haplogroup J is the third most frequent haplogroup in modern-day Scandinavia, although it did not originate there. To infer the genetic history of haplogroup J in Scandinavia, we examined worldwide mitogenome sequences using a maximum-likelihood phylogenetic approach.

Methods

Haplogroup J mitogenome sequences were gathered from GenBank (n = 2245) and aligned against the ancestral Reconstructed Sapiens Reference Sequence. We also analyzed haplogroup J Viking Age sequences from the European Nucleotide Archive (n = 54). Genetic distances were estimated from these data and projected onto a maximum likelihood rooted phylogenetic tree to analyze clustering and branching dates.

Results

Haplogroup J originated approximately 42.6 kya (95% CI: 30.0–64.7), with several of its earliest branches being found within the Arabian Peninsula and Northern Africa. J1b was found most frequently in the Near East and Arabian Peninsula, while J1c occurred most frequently in Europe. Based on phylogenetic dating, subhaplogroup J1c has its early roots in the Mediterranean and Western Balkans. Otherwise, the majority of the branches found in Scandinavia are younger than those seen elsewhere, indicating that haplogroup J dispersed relatively recently into Northern Europe, most plausibly with Neolithic farmers.

Conclusions

Haplogroup J appeared when Scandinavia was transitioning to agriculture over 6 kya, with J1c being the most common lineage there today. Changes in the distribution of haplogroup J mtDNAs were likely driven by the expansion of farming from West Asia into Southern Europe, followed by a later expansion into Scandinavia, with other J subhaplogroups appearing among Scandinavian groups as early as the Viking Age.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号