首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
  32篇
  2021年   3篇
  2019年   3篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2002年   2篇
  1999年   2篇
排序方式: 共有32条查询结果,搜索用时 0 毫秒
1.
The aim of this study was to assess the involvement of eosinophil cationic protein, a marker of eosinophil activation, in the development of in-stent restenosis after drug-eluting stent implantation. Follow-up angiography at 6 to 12?months was performed in 32 patients who were treated with percutaneous coronary intervention and implantation of sirolimus-eluting stents. Blood plasma levels of eosinophil cationic protein (ECP) and total immunoglobulin E (IgE) were measured by enzyme-linked immunosorbent assay and the level of C-reactive protein (hs-CRP) by high-sensitivity nephelometry. According to angiography data, in-stent restenosis occurred in 13 patients, while 19 patients did not develop it. There were no differences between the hs-CRP and IgE levels in patients with or without restenosis. In contrast, ECP level was higher in patients with restenosis compared with that in patients without restenosis [17.7?ng/mL (11.2-24.0) vs. 9.0?ng/mL (6.4-12.9), p?= 0.017]. The incidence of in-stent restenoses was 63% in patients with ECP level higher than or equal to 11?ng/mL, and 19% in patients with an ECP level lower than 11?ng/mL (p?= 0.019). These findings suggest that elevated eosinophil activation may play an important role in the pathogenesis of in-stent restenosis after implantation of drug-eluting stents.  相似文献   
2.
3.
4.
5.
The pH-dependent heterometallic complex formation with p-sulfonatothiacalix[4]arene (TCAS) as bridging ligand in aqueous solutions was revealed by the use of spectrophotometry, nuclear magnetic relaxation and fluorimetry methods. The novelty of the structural motif presented is that the appendance of emission metal center ([Ru(bpy)3]2+) is achieved through the cooperative non-covalent interactions with the upper rim of TCAS. The second metal block (Fe(III), Fe(II) and Mn(II)), bound with the lower rim of TCAS in the inner sphere coordination mode is serving as quencher of [Ru(bpy)3]2+ emission. The difference between the complex ability of Fe(III) and Fe(II) ions provides pH conditions for redox-dependent emission of [Ru(bpy)3]2+.  相似文献   
6.
The present work introduces for the first time a nanoparticulate approach for ex vivo monitoring of acetylcholinesterase‐catalyzed hydrolysis of endogenous acetylcholine released from nerve varicosities in mice atria. Amino‐modified 20‐nm size silica nanoparticles (SNs) doped by luminescent Tb(III) complexes were applied as the nanosensors. Their sensing capacity results from the decreased intensity of Tb(III)‐centred luminescence due to the quenching effect of acetic acid derived from acetylcholinesterase‐catalyzed hydrolysis of acetylcholine. Sensitivity of the SNs in monitoring acetylcholine hydrolysis was confirmed by in vitro experiments. Isolated atria were exposed to the nanosensors for 10 min to stain cell membranes. Acetylcholine hydrolysis was monitored optically in the atria samples by measuring quenching of Tb(III)‐centred luminescence by acetic acid derived from endogenous acetylcholine due to its acetylcholinesterase‐catalyzed hydrolysis. The reliability of the sensing was demonstrated by the quenching effect of exogenous acetylcholine added to the bath solution. Additionally, no luminescence quenching occurred when the atria were pre‐treated with the acetylcholinesterase inhibitor paraoxon.  相似文献   
7.
Genome copy number variation occurs during each mitotic and meiotic cycle and it is crucial for organisms to maintain their natural ploidy. Defects in ploidy transitions can lead to chromosome instability, which is a hallmark of cancer. Ploidy in the haploid human fungal pathogen Cryptococcus neoformans is exquisitely orchestrated and ranges from haploid to polyploid during sexual development and under various environmental and host conditions. However, the mechanisms controlling these ploidy transitions are largely unknown. During C. deneoformans (formerly C. neoformans var. neoformans, serotype D) unisexual reproduction, ploidy increases prior to the onset of meiosis, can be independent from cell-cell fusion and nuclear fusion, and likely occurs through an endoreplication pathway. To elucidate the molecular mechanisms underlying this ploidy transition, we identified twenty cell cycle-regulating genes encoding cyclins, cyclin-dependent kinases (CDK), and CDK regulators. We characterized four cyclin genes and two CDK regulator genes that were differentially expressed during unisexual reproduction and contributed to diploidization. To detect ploidy transition events, we generated a ploidy reporter, called NURAT, which can detect copy number increases via double selection for nourseothricin-resistant, uracil-prototrophic cells. Utilizing this ploidy reporter, we showed that ploidy transition from haploid to diploid can be detected during the early phases of unisexual reproduction. Interestingly, selection for the NURAT reporter revealed several instances of segmental aneuploidy of multiple chromosomes, which conferred azole resistance in some isolates. These findings provide further evidence of ploidy plasticity in fungi with significant biological and public health implications.  相似文献   
8.
9.
Cancer is a disease that claims millions of lives each year across the world. Despite advancement in technologies and therapeutics for treating the disease, these modes are often found to turn ineffective during the course of treatment. The resistance against drugs in cancer patients stems from multiple factors, which constitute genetic heterogeneity like gene mutations, tumor microenvironment, exosomes, miRNAs, high rate of drug efflux from cells, and so on. This review attempts to collate all such known and reported factors that influence cancer drug resistance and may help researchers with information that might be useful in developing better therapeutics in near future to enable better management of several cancers across the world.  相似文献   
10.
Synaptotagmins are vesicular proteins implicated in many membrane trafficking events. They are highly conserved in evolution and the mammalian family contains 16 isoforms. We now show that the tandem C2 domains of several calcium-sensitive synaptotagmin isoforms tested, including Drosophila synaptotagmin, rapidly cross-link phospholipid membranes. In contrast to the tandem structure, individual C2 domains failed to trigger membrane cross-linking in several novel assays. Large-scale liposomal aggregation driven by tandem C2 domains in response to calcium was confirmed by the following techniques: turbidity assay, dynamic light-scattering and both confocal and negative stain electron microscopy. Firm cross-linking of membranes was evident from laser trap experiments. High-resolution cryo-electron microscopy revealed that membrane cross-linking by tandem C2 domains results in a constant distance of ∼9 nm between the apposed membranes. Our findings show the conserved nature of this important property of synaptotagmin, demonstrate the significance of the tandem C2 domain structure and provide a plausible explanation for the accelerating effect of synaptotagmins on membrane fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号