首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   6篇
  209篇
  2024年   2篇
  2023年   4篇
  2022年   7篇
  2021年   14篇
  2020年   2篇
  2019年   8篇
  2018年   6篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   14篇
  2013年   20篇
  2012年   19篇
  2011年   14篇
  2010年   13篇
  2009年   11篇
  2008年   9篇
  2007年   11篇
  2006年   14篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  1999年   1篇
  1987年   3篇
  1980年   1篇
排序方式: 共有209条查询结果,搜索用时 0 毫秒
1.
Trigonopsis variabilis induced for D-amino acid oxidase and catalase was immobilized by entrapment in Polyacrylamide beads obtained by radiation polymerisation. Permeabilization of the cells was found to be essential for optimal activity of the enzymes in free cells. However, the process of entrapment itself was found to eliminate the permeability barrier of cells immobilized in Polyacrylamide. The two enzymes exhibited a differential response on Polyacrylamide entrapment. Thus, D-amino acid oxidase activity was stabilized to heat inactivation whereas catalase in the same cells showed a destabilization on entrapment in Polyacrylamide. The coimmobilized enzyme preparation showed an operational half life of 7–9 days after which the D-amino acid oxidase activity remained stable at a value 35–40% of that of the initial activity for a study period of 3 weeks. Coimmobilization of MnO2 was not effective in enhancing the operational life of the enzyme preparation.  相似文献   
2.
    
Several scientific studies have suggested a link between increased exposure to pollutants and a rise in the number of neurodegenerative disorders of unknown origin. Notably, triclosan (an antimicrobial agent) is used in concentrations ranging from 0.3% to 1% in various consumer products. Recent studies have also highlighted triclosan as an emerging toxic pollutant due to its increasing global use. However, a definitive link is missing to associate the rising use of triclosan and the growing number of neurodegenerative disorders or neurotoxicity. In this article, we present systematic scientific evidence which are otherwise scattered to suggest that triclosan can indeed induce neurotoxic effects, especially in vertebrate organisms including humans. Mechanistically, triclosan affected important developmental and differentiation genes, structural genes, genes for signaling receptors and genes for neurotransmitter controlling enzymes. Triclosan-induced oxidative stress impacting cellular proteins and homeostasis which triggers apoptosis. Though the scientific evidence collated in this article unequivocally indicates that triclosan can cause neurotoxicity, further epidemiological studies may be needed to confirm the effects on humans.  相似文献   
3.
    
Myeloproliferative neoplasms (MPNs) are frequently driven by mutations within the C-terminal domain (C-domain) of calreticulin (CRT). CRTDel52 and CRTIns5 are recurrent mutations. Oncogenic transformation requires both mutated CRT and the thrombopoietin receptor (Mpl), but the molecular mechanism of CRT-mediated constitutive activation of Mpl is unknown. We show that the acquired C-domain of CRTDel52 mediates both Mpl binding and disulfide-linked CRTDel52 dimerization. Cysteine mutations within the novel C-domain (C400A and C404A) and the conserved N-terminal domain (N-domain; C163A) of CRTDel52 are required to reduce disulfide-mediated dimers and multimers of CRTDel52. Based on these data and published structures of CRT oligomers, we identify an N-domain dimerization interface relevant to both WT CRT and CRTDel52. Elimination of disulfide bonds and ionic interactions at both N-domain and C-domain dimerization interfaces is required to abrogate the ability of CRTDel52 to mediate cell proliferation via Mpl. Thus, MPNs exploit a natural dimerization interface of CRT combined with C-domain gain of function to achieve cell transformation.  相似文献   
4.
5.
Cathepsin B-like genes from Leishmania donovani and Leishmania chagasi have been isolated and characterized. It is a single gene, which is constitutively expressed in all the life cycle stages of the parasite. Studies using cathepsin B-specific inhibitor treatment suggested that cathepsin B does not seem to play a role in the promastigote stages of the parasite, however it aids in the parasite survival within the host macrophages. Antisense mRNA inhibition of cathepsin B gene also revealed that it plays an important role in the parasite survival within the host macrophages. Furthermore, for the first time, we have shown that Leishmania whole cell lysates as well as the recombinant cathepsin B protein cleaved human recombinant latent transforming growth factor (TGF)-beta1 into a mature peptide releasing the latency associated protein, in a cell-free incubation system. Mink lung epithelial cell growth inhibition assay revealed that the cleaved TGF-beta1 was biologically active, suggesting that Leishmania cathepsin B can cleave latent TGF-beta1 into mature and active form. These results suggest that cathepsin B plays an important role in Leishmania survival within the host macrophages by activating latent TGF-beta1.  相似文献   
6.
    
Crimean-Congo hemorrhagic fever (CCHF) virus is one among the major zoonosis viral diseases that use the Hyalomma ticks as their transmission vector to cause viral infection to the human and mammalian community. The fatality of infectious is high across the world especially in Africa, Asia, Middle East, and Europe. This study regarding codon usage bias of S, M, and L segments of the CCHF virus pertaining to the host Homo sapiens, reveals in-depth information about the evolutionary characteristics of CCHFV. Relative Synonymous Codon Usage (RSCU), Effective number of codons (ENC) were calculated, to determine the codon usage pattern in each segment. Correlation analysis between Codon adaptation index (CAI), GRAVY (Hydrophobicity), AROMO (Aromaticity), and nucleotide composition revealed bias in the codon usage pattern. There was no strong codon bias found among any segments of the CCHF virus, indicating both the factors i.e., natural selection and mutational pressure shapes the codon usage bias.  相似文献   
7.
The synthesis of Zinc oxide nanoparticles using a plant-mediated approach is presented in this paper. The nanoparticles were successfully synthesized using the Nitrate derivative of Zinc and plant extract of the indigenous medicinal plant Cayratia pedata. 0.1 mM of Zn (NO3)2.6H2O was made to react with the plant extract at different concentrations, and the reaction temperature was maintained at 55 °C, 65 °C, and 75 °C. The yellow coloured paste obtained was wholly dried, collected, and packed for further analysis. In the UV visible spectrometer (UV–Vis) absorption peak was observed at 320 nm, which is specific for Zinc oxide nanoparticles. The characterization carried out using Field Emission Scanning Electron Microscope (FESEM) reveals the presence of Zinc oxide nanoparticles in its agglomerated form. From the X-ray diffraction (XRD) pattern, the average size of the nanoparticles was estimated to be 52.24 nm. Energy Dispersive Spectrum (EDX) results show the composition of Zinc and Oxygen, giving strong energy signals of 78.32% and 12.78% for Zinc and Oxygen, respectively. Fourier Transform - Infra-Red (FT-IR) spectroscopic analysis shows absorption peak of Zn–O bonding between 400 and 600 cm?1. The various characterization methods carried out confirm the formation of nano Zinc oxide. The synthesized nanoparticles were used in the immobilization of the enzyme Glucose oxidase. Relative activity of 60% was obtained when Glucose oxidase was immobilized with the green synthesized ZnO nanoparticles. A comparative study of the green synthesized with native ZnO was also carried out. This green method of synthesis was found to be cost-effective and eco-friendly.  相似文献   
8.
Fluoroquinolines are broad spectrum fourth generation antibiotics. Some of the Fluoroquinolines exhibit antifungal activity. We are reporting the potential mechanism of action of a fluoroquinoline antibiotic, moxifloxacin on the growth, morphogenesis and biofilm formation of the human pathogen Candida albicans. Moxifloxacin was found to be Candidacidal in nature. Moxifloxacin seems to inhibit the yeast to Hyphal morphogenesis by affecting signaling pathways. It arrested the cell cycle of C. albicans at S phase. Docking of moxifloxacin with predicted structure of C. albicans DNA Topoisomerase II suggests that moxifloxacin may bind and inhibit the activity of DNA Topoisomerase II in C. albicans. Moxifloxacin could be used as a dual purpose antibiotic for treating mixed infections caused by bacteria as well as C. albicans. In addition chances of developing moxifloxacin resistance in C. albicans are less considering the fact that moxifloxacin may target multiple steps in yeast to hyphal transition in C. albicans.  相似文献   
9.
Complex biological systems exhibit a property of robustness at all levels of organization. Through different mechanisms, the system tries to sustain stress such as due to starvation or drug exposure. To explore whether reconfiguration of the metabolic networks is used as a means to achieve robustness, we have studied possible metabolic adjustments in Mtb upon exposure to isoniazid (INH), a front-line clinical drug. The redundancy in the genome of M. tuberculosis (Mtb) makes it an attractive system to explore if alternate routes of metabolism exist in the bacterium. While the mechanism of action of INH is well studied, its effect on the overall metabolism is not well characterized. Using flux balance analysis, inhibiting the fluxes flowing through the reactions catalyzed by Rv1484, the target of INH, significantly changes the overall flux profiles. At the pathway level, activation or inactivation of certain pathways distant from the target pathway, are seen. Metabolites such as NADPH are shown to reduce drastically, while fatty acids tend to accumulate. The overall biomass also decreases with increasing inhibition levels. Inhibition studies, pathway level clustering and comparison of the flux profiles with the gene expression data indicate the activation of folate metabolism, ubiquinone metabolism, and metabolism of certain amino acids. This analysis provides insights useful for target identification and designing strategies for combination therapy. Insights gained about the role of individual components of a system and their interactions will also provide a basis for reconstruction of whole systems through synthetic biology approaches.  相似文献   
10.
Glutathione-S-transferase (EC 2.5.1.18) activity was assayed in hepatic and extra-hepatic tissues of pigeons using l-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrates. Gluthathione-S-transferase activity towards 1-chloro-2,4-dinitrobenzene in pigeon was in the order: kidney > liver > testes > brain > lung> heart. The enzyme activity with 1-chloro-2,4-dinitrobenzene as substrate was 40–44 times higher in pigeon liver and kidney than that observed with 1,2-dichloro-4-dinitrobenzene as substrate.K m values of hepatic and renal glutathione transferase with l-chloro-2,4-dinitrobenzene as substrate were 2.5 and 3 mM respectively. Double reciprocal plots with varying reduced gluthathione concentrations resulted in biphasic curves with twoK m values (liver 0.31 mM and 4mM; kidney 0.36 mM and 1.3 mM). The enzyme activity was inhibited by oxidized gluthathione in a dose-dependent pattern. 3-Methylcholanthrene elicited about 50% induction of hepatic glutathione transferase activity whereas phénobarbital was ineffective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号